UNCLASSIFIED

AD NUMBER

ADB184323

NEW LIMITATION CHANGE

TO

Approved for public release, distribution
unlimited

FROM
Distribution authorized to U.S. Gov't.
agencies and their contractors;
Administrative/Operational Use; APR 1949.
Other requests shall be referred to the
National Aeronautics and Space
Administration, Washington, DC 20546.

AUTHORITY

NASA TR Server Website

THIS PAGE IS UNCLASSIFIED




e

34-14172

“DTIC USERS ONLY"

AD-B184 323 ’ vZa
WENHIAR _

NATIONAL ADVISORY COMMITTEE

FOR AERONAUTICS N
TECHNK&AL MEMORANDUM Q

No, 1217

LECTURE SERIES “BOUNDARY LAYER THEORY”

PART I - LAMINAR FLOWS

B ARETIE AT

By H. Schlichting

Trenslation of “Vortragsreihe” W.S. 1941/42, Luft-
fahrtforschungsanstait Hermann Goring, Braunschweig

SLNACA

T S

April 1049

WIIG QUALD . IRITIOTED 1

04 5 11 050 e




NACA TM No. 1217

PREFACE

I gave the lecture series "Boundary-Lager Theory" in the winter
semester 1941 /42 for the members of my Institute and for a considerable
number of collaborators from the Hermann Goring Institute for Aviation
Research., The series embraced a total of sixteen two-hour lectures.

The aim of the lecture series was to give a survey of the more
recent results of the theory of viscous fluids as far as they are of
importance for actual applications. ' Naturally the theory of the boundary
of frictional layer takss up the greatest part. In view of the great
volume of material, a complete treatment was out of the question.
However, I took palns to make concepts everywhere stand out clearly.
Moreover, several important typlical examples were treated in detall.

Dr. H. Hahnemann (LFA, Institute for Motor Research) went to
considerable trouble in order to perfect an elaboration of this lecture
series which I examimed and supplemented in a few places. Miss Hildegard
. Munz participated in the illustration. To both I owe my most sincere
thanks for this collaboration.

Schlichting
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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHENICAL MEMORANDUM NO. 1217

LECTURE SERIES "BOUNDARY LAYER THEORY"
Part I — Laminar Flows™
By H. Schlichting

First lecture (Dec. 1, 194l)

INTRODUCTION

Gentlemen: In the lecture series starting today I want to give
you a survey of a fleld of aerodynamics which has for a number of years
been attracting an ever growing interest. The subject is the theory of
flows with friction, and, within that field, particularly the theory of
friction layers, or boundary layers.

‘ As you know, a great many considerations of aerodynamice are based
on the so—called ideal fluid, that is, the frictionlese incompressible
fluld. By neglect of compressibility and friction the extensive mathe-—
matical theory of the ideal fluid (potential theory) has been made
possible. ‘

Actual liquids and gases satisfy the condition of incompressibility
rather well 1f the velocitles are not extremely high or, more accurately,
if they are small in comparison with sonic velocity. For air, for
inetance, the change 1In volume due to compressibllity amounte to about
1 percent for a velocity of 60 meters per second.

The hypothesis of absence of friction is not satisfied by any
actual fluid; however, i1t ie true that most technically important fluids,
for instance air and water, have a very small friction coefficient and
therefore behave in many cases almost like the ideal frictionless fluid.
Many flow phenomena, in particular most cases of 1ift, can be treated
satisfactorily, — that is, the calculations are in good agreement with
the test results, — under the assumption of frictionless fluid. However,
the calculations with frictionless flow show a very serious deficiency;
namely, the fact, known as d'Alembert's paradox, that in frictionless
flow each body has zero drag whereas in actual flow each body experiences
a drag of greater or smaller magnitude. For a long time the theory has
been unable to bridge this gap between the theory of frictionless flow
and the experimental findings about actual flow. The cause of this
fundamental discrepancy is the viscosity which 18 neglected in the theory

#"Yortragsreihe 'Grenzschichttheorie.' Teil A: Leminare Strdmungen.”
Zentrale fur wissenschaftliches Berichtswesen der Luftfahrtforshung des
Generalluftzeugmeisters (ZWB) Berlin-Adlershof, pp. 1-153. Given in the
Winter Semester 1941/42 at the Luftfahrtforschungsanstalt Hermann uoring,
Braunschweig. The original language version of this report is divided into
two main parts, Teil A and Teil B, which have been translated as separate
NACA Technical Memorandums, Nos. 1217 and 1218, designated part I and part II,
respectively.
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of the 1deal fluid; however, in splte of ite extraordinary smallness it

is declislive for the course of the flow phenomenon. As a matter of fact .
the problem of drag can not be treated at all without taking the viscosity

into account.

Although this fact had been known for a long time, no proper approach
to the theoretical treatment of the drag problem could be found until the
beginning of the present century. The main reason was that unsurmountable
mathematical difficulties stood in the way of theoretical treatment of the
flow phenomena of the viscous fluid. It 1s Professor Prandtl's great merit
to have shown & way to numerical treatment of viscosity, particularly of
the technically important flows under consideration and thereby to have
opened up new vistas on many important perceptions about the drag problem
and related questions. Prandtl was able to show that in the case of most
of the technically important flows one may treat the flow, as a whole, as
frictionless and utilize the simplifications for the calculation thus made
possible, but that in the immediate neighborhood of the solid walls one
alwaye had to take the friction into consideration. Thus Prandtl subdivides,
for the purpose of calculation, the flow surrounding a body into two
domains: a layer subJect to friction in the neighborhood of the body, and a
frictionless region outside of this layer. The theory of this so—called
"Prandtl's friction or boundary layer™ has proved to be very fruitful in
modern flow theory; the present lecture will center around 1it.

At this point I want to indicate a few applications of the boundary-—
layer theory. A first important application is the calculation of the
frictional surface drag of bodies immersed in a flow, for instance, the
drag of a flat plate in longitudinal flow, the frictional drag of a ship, -
a wing profile, and an airplane fuselage. A speclal property of the
boundary layer 1s the fact that under certain circumstances reverse flow
occurs in the immediate proximity of the surface. Then, in connection
with this reverse flow, a separation of the boundary layer takes place,
together with a more or leses strong formation of vortices in the flow
behind the body. Thus a considerable change in pressure distribution,
compared with frictionless flow, results, which gives rise to the form
drag of the body immersed in the flow: The boundary-layer theory therefore
offers an approach to the calculation of this form drag. Separation occurs
not only in the flow around a body but also in the flow through a divergent
tunnel.

Thus flow phenomena in a diffuser, as, for instance, in the bucket
grid of a turbine, may be included in boundary-layer theory. Furthermore,
the phenomena connected with the maximum 11ft of a wing, where flow
separation is concerned, can be understood only with the aid of boundary-—
layer theory. The problems of heat transfer also can be explained only
by boundary-layer theory.

As will be shown in detall later, one must distinguish between the
two states of boundary-layer flow — laminar and turbulent; their flow laws
are very different. Accordingly, the lecture will be divided into three
main parts: 1. Laminar flows, 2. Turbulent flows, 3. Laminar-turbulent *
transition. Although the boundary layer will be our main consideration,
1t will still be necessary as preparation to discuss to some extent the
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general theory of the viscous fluid. This will be done in the first
chapter.

CHAPTER I. VISCOSITY

Every fluid offers a resistance to a form variation taking place in
finite time interval, which is of different magnitude according to the
type of fluid. It is, for instance, very large for syrup or oil, but
only small for the technically important fluide (water, air).

The concept of viscosity can be best made clear by means of a test
according to figure 1:

Let fluid be between two parallel plates lying at a distance h
from each other. Let the lower plate be fixed, while the upper plate is
moved with the velocity u, uniformly and parallel to the lower one.

For moving the upper plate a tangential force P must be expended which
is

P =uF % ‘ (1.1)

according to experiment, where F 1s the area of the upper plate and u
is a constant of proportionality. (End effects are not included). The
quantity u 18 called the viscosity coefficient or the dynamic viscosity.

Since the phenomenon in question is a parallel gliding, the transverse
velocity component in the y—direction, denoted by v, equals zero. The
fluid adheres to the upper and lower surface, respectively, a linear
velocity distribution between the plates is set up, the magnitude of
which depends solely on y.

ey

u(y) = u, % or: E? = %?

Since for y =0: u=0, for y=h: u=u, If one designates P/F,

the tangential force per unit area, as the frictional shearing stress -,
there follows:

=, du 2
= - k lo2
T H g/m ( )
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Ths dimensions of u are accordingly kg sec/m?. A flow as represented

in figure 1, where no transverse velocity occurs and the shearing stress

at all points of the flow is therefore given by equation (1.2), 1s called -
simple shear flow. In the speclal case described, the shearing stress 1is
everywhere of equal magnitude, and equal to that at the surface. Besldes

the dynamic viscosity p the concept of kinematic viscosity v 1is

required, which for the densi*y p [%g secgnrh] is defined as

vV = % [#a/é]

For 200 C, v 1s, for instance, for water:

v = 1.01 x 1070 n?/s

for air:
vV = 14.9 X 10'6-m2/s.v % 107% ml /s

1f the air pressure has the standard value py = 760 mm hg.
CHAPTER II. POISEUILLE FLOW THROUGH A PIPE

The elementary empirical friction law of the simple shear flow
derived above permits the immediate determination of the flow and the
resistance in a smooth pipe of circular cross section and of constant
diamster, 4 = 2r. At a very large distance from the beginning of the
pipe one cuts off a piece of pipe of length 1 (fig. 2) and examines
the cylinder of diameter 2y, the axis of which is identical with the
pipe axis. According to what has been said so far, the velocity probably
will be again a function of y. A pressure difference p; — Py is .

required for forcing the fluld through the cylinder. According to
practical experience, the static pressure a’ross svery cross gection may
be regardei as constant, Ths flow i3 aszam=i to be stealy and not
depenient on the dictan:e from the beginning of tre pilp:. Equilibrium
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must then exist between the pressure and the frictional shearing stress
which attempts to retard the motion. Thus for the cylinder of radius ¥y
the following equation is valid: pressure force difference acting at

the cross sections = frictional force acting along the cylinder wall, or

(pl - p2>rry2 = 2nylT (2.1)
or
Py — P
T = —i—f——g % (2.1a)

Since flow parallel to the axis is to be expected, one takes from the

previous paragraph, T = — u%? (the minuse sign indicates that the

velocity diminishes with increasing distance from the axie; thus du/dy
is negative, the shearing stresses under consideration, however, are
positive), and, after separation of the variables, du becomes:

__Dh ~P
T Ly (2.2)

and, on integration:

P - Pp ﬁ)
= e | (= e
u(y) = < M

From the fact that for y = r the velocity is supposed to be u(y) =0
follows that the constant of integration C hae to be C = r2/4. Thus:

_P1-DP2
u(y) = == (2 - ¥2) (2.3)
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This equation (2.3) is Poissuille's law for pipe flow. It states that
the velocity u(y) is distributed parabolically over the pipe cross
section. The apex of the parabola lies on the pipe axis; here the
velocity is greatest, namely:

Py -
w =i 72,2 (2.4)
huz

Therewith one may write (2.3):

u(y) = uy, ( -1§> (2.3a)

r

By Poiseuille's law (equation (2.3)) the drag of the developed laminar
flow (which is proportional to Py — p2) is directly proportional to

the first power of the veloclty.

This statement is characteristic of all kinds of laminar flow
whareas, as will be seen later, the drag in turbulent flow is almost
proportional to the second power of the velocity.

The flow volume for the present case remains to be given. With a4F

designating an area element, Q 18 Q = u(y) & F = volume of the

velocity paraboloid, therefore

N
S - =X -
Q=gmrsu " (p; = p,) (2.5)

This flow law 1s of'ten used for determination of the viscosity, by
measuring the quantity flowing subjected to a pressure gradient (usually
produced by gravity in a vertical capillary tube). Of course, the
starting losses -must be taken into consideration which due to the mixing
zone (vortex formation) at the pipe end are not recovered to their full
extent.

A drag coefficient A will now be defined. Since turbulent flows
are more important than lamlinar ones and since the drag in turbulent
flow increases about as the square of the velocity, A will also be
rePsrred to uZ.

For flow problems, let A\ thus be defined as: ratio of the pressure
drop along a test section of a specified characteristic length to the dynamic
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pressure q = pﬁe/Q, with u = -95 = the mean velocity (average taken
nr

across the cross section). Then:

(2.6)

30
ol

with 4 = characteristic length, thus, for the present case, the pipe
dlameter, and with )\ = dimensionless quantity. For the present developed
laminar pipe flow, according to equation (2.5)

dp _P1 " P2 guq

dx 1 ot
Thus:
, =24 8uq _2a8u Q _ 16‘1“2:@5[2
— _— - =4 u
pu_ nr pur- mru pu(g)
=1
or
A = 6_1" (2.7)
Re

with the dimensionless quantity Re = %g signifying the Reynolds number

of the circular pipe. Since the pressure drop which is only linearily
dependent on the velocity was referred to ﬁa, then, for laminar flow:

A~ %. A logarithmic plot of A = f(Re) or A\ = f(Q) therefore results
u
in a straight line inclined 45° toward the Re-axis (compare fig. 82 Part II..

After this short analysis of the one—dimensional case of viscous
fluid we will now consider the three—dimensional case.
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CHAPTER III. EQUATIONS OF MOTION OF THE VISCOUS FLUID

a. State of Stress

For this purpose one must know first of all the general state of
gtress in a moving viscous fluid and must then connect this state of
stress with the state of deformation. For the deformation of solid
bodies the reslstance to the deformation i1s put proportional to the
magnitude of the deformation (assuming the validity of Hooke's law).

For flowing fluide, on the other hand, the resistance to deformation
will depend on the deformation velocity, that 1s, on the variation of
velocity in the neighborhood of the point under consideration. (Solid
bodies: displacement gradient = displacement per second. Fluid:
velocity gradient).

One starts from the basic law of mechanics according to which:
mass Xx acceleration = sum of the acting, or resultant force. For the
magss—per—-unit volume, that is, the density p, one may write the law

*Dw
P —==K+R+F .1
—~ =K+B+1I (3.1)
Dw
Bi = gubgtantial acceleration
g = mass forces
R = surface forces, composed of pressure forces normal to the
surface and frictional forces in the direction of the
surface
F = negligible extraneous forces

In order to formulate the surface forces, one imagines & small rectangular
element of volume dV = dx dy dz cut out of the flow (fig. 3) the left
front corner of which lies at the point (x, y, z). The elemsnt is to be
very emall so that only the linear variations of a Taylor devslopment
need to be taken into consideration; on 1ts surfaces dy dz act the
resultant stresses (vectors):

op
_x .
P, or p,+ = dx, respectively (3.2)

* Throughout the text, underscored letters gfe uééd in place of
corresponding German script letters used in the original text.




NACA TM No. 1217 9

(The index x signifies that the strese tensor acts on a surface element
normal to the x—direction).

Analogous terms result for the surfaces dz dx normal to the
y—axis and dx dy normal to the z-axis, if x 1n equation (3.2) is
replaced everywhere by y or 2z, respectively. From this there results
as components of the resultant force:

Force on the surface element normal to the x—direction: — dx 4y dz
Force on the surface element normsl to the y—direction: = dy dz dx
Force on the surface element normal to the z—direction: — dz dx dy

The total resultant surface force R per unit volume caused by the
state of stress ie therefore:

R=—24+ =Ly 22 (3.3)

P, P ¢t¢nd p are vectors which can be further decomposed into
== -z

componente. In this decomposition the components normal to every surface
element, that 1s, the normal stresses, are designated by o (indicating
by the index the direction of this normal stress); the other components
(tangential stresses) are denoted by T (with doubls index: the first
indicates to which axis the surface elemsnt is perpendicular, the second,
the axtal direction of the stress T). With these symbols there is:

=10 + Jr  + kr
Bx Ux J Xy Xz
{p =117 + Jo + kT > (3.4)
-y Jx y yz!
|
=1ir + Jt + ko
-z 72X 7y %}

This state of stress represents a tensor with nine vector components,
which can be characterized by the stress matrix (stress tensor):

g
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O Txy Txz
Tyx % Tyz (3.5)
Nzx Tzy Oz

It can reidily be shown that those of the six tangential stresses
which have the same indices, although in interchanged sequence, must be
equal. This follows for a homogeneous state of strese from the equilibrium
of the small cube dx dy dz with respect to rotation:

Since Txy dy dx 1s the force attempting to rotate the cube counter—

clockwise about the z-axis, (seen from above in fig. 3), with the lever
arm dx, and since, correspondingly, the force ‘Wyx dx dz attempts to

rotate the cube clockwise about the z-axis, with the lever arm dy the
balance of moments requires: '

Txy dy dz dx - Txy dx dz dy = 0, thus Txy ™ Tyx*

Correspondingly, because of freedom from rotation about the x—axis
ﬁyz = sz, and because of freedom from rotation about the y-axis
T =T

zXx xz’
and the stress matrix (equation (3.5)) is converted into the stress
matrix symmetrical with respect to the principal diagonal:

the nine components of the stress tensor are reduced to six

% Txy Txz
Txy % Tz (stress matrix) (3.6)
"xz Tyz Oz

For the frictional force one obtains according to equation (3.3) by
insertion of the components from equation (3.4) and by reduction to the
six remaining terms according to equation (3.6):
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da or or oT da ot
1( X, Xy Xz +J< Xy y yz

. R = + + +
\ Ox oy oz T Ox oy oz
= x—component + y—component
(3.7)
'k <asz X a'ryz . Boz>
T\ 3x dy dz

+ z—component.

For the case of the frictionless (1deal) fluid all shearing

stresses disappear

= Ty = Tax = O (3.8)

- and only the normal etresses remaln, which in this case are all equal.
Since the normal stresses from within toward the outside are denoted as
positive, the normal stresees equal the negative fluld pressure:

6,=0_ =0 =-p (3.9)

—

The statlc pressure equals the negative arithmetic mean of the normal
stresses:

b. State of Deformation

The state of stress treated so far is, alone, not very useful.
Therefore we will now consider the state of deformation (that 18 the
field of velocity variations) and then set up the relations between
atats of etress and state of deformation,
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Let the velocity ¥a with the components Ups Vp, Wy in the

directions of the axes exist at the point A the coordinates of which
are Xp, Yps Zp-

If one limits oneself to the points x, y, z in the immsdiate
neighborhood of A with the velocity w = iu + Jv + kw, and If one
limits oneself — as also in setting up the state of deformation - to
linear terms only, one obtains for the deformation the relative change
in position between the points x, y, z and xA, yA, zA per unit
time, that is, the difference of the velocities at the points x, y, 2z
and x, y., 2. :

A A A
(e (2 by o p ) (22) e feme (28] -a
u uA-<x xA)(ax>+(y yA)(8y> +(z ZA)(BZ) = du
A A
- i - h = ﬁ =
v—vA—(x—xA)<ax> +(y yA)(3y> + (z ZA)<6Z> av S (3.11)
A A A
ow ow ow
W—Ww, =(Xx-X - +(y y -\ + (z -2 — = dw
i@ (Z) - (B) e (@),
y
dw = 1 du + J dv + k dw = distortion of the fluid region in the
neighborhood of the point A.
Omitting the index A one obtains therefore:
d . dw, . . du.,  du >
dw = = dx + — —=dz=1|—dx + — —d
TRy R Y (ax YR
(3.ila)
x o oid o v Qw
+J<axdx+aydy+azdz>+_15_(axdx+aydy+azdz>

Thus the velocity variation (and hence, on integration, the velocity
iteslf) 1in the neighborhood of the point A 1s known if ths nine
partial derivatives of the velocity components with respect to the space
coordinates are known. Corresponding to the stress matrix, one may form
a deformation matrix:
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n w
ox oy oz
ov o o deformation matrix (3.12)
dx dy oz
™ o ow
ox oy oz

The friction forces of the viscous fluid are given by a relation (which
will have to be determined) between these two matrices. First, the
deformation matrix is to be somewhat clarified.

1. Case of pure elongation.

du _

One assumes u — u, = a(x — xA), with a = e constant. Let all
other terms of the matrix disappear; the matrix will then appear as

follows:

a 0 0
0O 0 O
0O O 0

Then the velocity variation is simply du = a dx, and u = ax,
All points of the y—axis remain at rest, the points to the right and
left of 1t are elongated or compressed, according to whether a >0
or a <0 (fig. 5). The equation u = ax therefore represents an
elongation or expansion parallel to the x—aexis. Corresponding relations
apply for the other terms of the principal diagonal of the matrix.

2. Case of pure translation

All terms disappear; the matrix then reads:
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In this case, which, as a matter of fact, should have been mentioned
first, u - u, = O, du = 0; u = constant. The velocity component

parallel to the x-axis is uniform (correspondingly for the other axes).

3. Case of angular deformation.

_ ou

One assumes u —u, = e(y - ya), with e = & = constant. All
y
other terms equal zero, and the matrix reads:

0 e 0
0O 0 O
0O O O

du = e dy and u = ey; that is, all points of the x—axis retain their
position; all points of the y-axis shift to the right (left), when e > O
(e <0); for ¢ >0 the y-axis 1s rotated clockwise by the angle ¢
(because of the linearity). The y—exis 1s simultaneously elongated. The
phenomenon in question is therefore a shearing (fig. 6), with tan € = e.

Correspondingly there results for v -V, = f (x - xA) and

0O o0 O
M= £ 0 O
o o0 o

All points of the y-axis retain their position; the points of the x-axis
are rotated by the angle 8; tan § = £ (fig.7). Terms outside of the
principal diagonal of the matrix result therefore in a deformation of

the right angle with axis-elongation (shearing). The right angle between
the x- and y-axes is, therefore, for e >0 and f >0 deformed by

e +5 = QZ + Qu =7y = Deformation about the z-axis

dx Jy Xy




NACA TM No. 1217 15

du , ow

Correspondingly: y o= =4
o dz X

deformation about the y—axis

7 =£}l+_al
yz 9y Oz

deformation about the x—exis

(The deformation angles are herein regarded as small so that the tangent
may be replaced by the argument).

¢. Navier—Stokes Formulation for the Stress Tensor

One now proceeds to relate the stress matrix (equation (3.6)) with
the deformation matrix (equation (3.12)). The former is symmetrical with
respect to the principal diagonal, but not the latter. However, one
obtains a symmetrical deformation matrix by adding to equation (3.12)
its reflection in the principal diagonal. Furthermore, one first splits
off the pressure p (contribution of the ideal fluid) from the stress
matrix and sets the remaining stress matrix, according to Stokes,
proportional to the deformation matrix made symmetrical:

o N N v
o Too! p O O QU4 a4 au |ou X o
O | x dy 3 ox ox
| ; ' !
7 ! | ; |
' o : 5 | 1 ?
Xy Oy YZi =~ '0 0: ;QK ov QI; ;QE v oW .1
| o u 3 az1+“éay 3 ay@ (3.13)
! i ‘ ! a
i o | |
T T g 0 0 ;Q! N oW u v ow
i Xz gz e ' p, iax dy Oz dz Jz Jdz

From equation (3.13) each stress component may be given immediately by
coordinating the homologous parts of the matrices to each other. For
instance: '

du

o, =~ P+ 2 u = = gtatic pressure + pressure due to
X velocity variation, or:
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o, =—=Dp+ 2u§2; o_==7D+ 2u§§; o, =—Dp+ 2ua!

. = =H(§+§)

Ty = Toy = u@; - &)

T = T = (B )

Xz zX 3z oax
[%hus for one—dimensional flow Txy = Tyx = u%?:]

Furthermore, there follows from equation (3.13):

% (?x + 0, + cz> =—7p+ Eh,<§9-+ &, QE)

y 3\ax Jdy Oz
or
1 =
3 (ox +og+ oz) ==p (3.14)
because
Qu, ov , ow_ -
= + Y + Sz divw=20

for the incompressible flows free of sources and sinks under considere-
tion.* Thus for the viscous incompressible flow, as for the ideal fluid
the pressure equals the arithmetic mean of the normal stresses.

With these results the components of the friction force may be
expressed according to equation (3.7) as follows:

* The compressibility manifests 1tself as normal stress, since it can
be interpreted as a pressure disturbance, for instance due to variation
in density, which attempts to spread in all directions — considered
infinitesimally.
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%=?higjm“_iﬂlﬁ+&u$u
x & oz x NERENERSNY-
* “(iZ 3% &)

or, since aiv w =0,
Rx=—§+ pAu |
Ry=—§2-+pAV L
Rz=-§+m

in which Au=8—23+ 2“‘4.&“.
ax2 ayQ 522

If one finally designates the mass forces by K = p(iX + JY + kZ),

assumes the decomposition of the substantial derivative into a local
and convective part as known from Buler's equation, one obtains for the
components of the equation of motion of the non—stationary, incompressidble,

and viscous fluid from equation (3.1):

du, u, du, g
p<8t+ubx+vby+ az>°x 8x+uAu
v, ¥, ¥, X dp
—— — —w—:Y_
p(8t+uax+vby+ z) o ay+|.1Av f
ov ow ov MY\ _ g _d
p<3t+u8x+v8y+w8) pZ Bz+quJ
In addition, the continuity equation
Qu ., Qv QW _
x oy T

17

(3.15)

and

(3.16)

(3.17)
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1s used. Written in vector form, the Navier—Stokes differential equation
and the equation of continuilty read

Dw 1
= =K - =
vl Sl grad p + VAW (3.18)

divw =0 (3.19)

Due to the friction terms, therefore, terms of the second order enter
the differential equation.

Boundary conditions are attached to these equations. If all friction
terms on the right side are cancelled, that is VvV = 0, the differential
equations become equations of the first order and gpe boundary condition
is sufficient, namely the boundary condition of the potential flow:

v, = 0 on the bounding walls.

This means that the normal component v, of the velocity at ths

bounding surface must disappear on the surface itself whereas the fluid
still can glide parallel to the boundary (tangential velocity v,

parallel to the surface # 0).

For viscous flow where the differential equation is of the second
order, two boundary conditions are required, namely:

v,=0 and v, =0 (condition of no slip) (3.20)

that is, the fluid must in addition adhere to the surface.

Second lecture (Dec. 8, 1941)

CHAPTER IV. GENERAL PROPERTIES OF NAVIER-STOKES EQUATIONS

These Navier—Stokes differential equations represent together with
the equation of continuity a system of four equations for the four
unknown quantities u, v, w, p. On the left side of the Navier-Stokes
differential equations are the inertia terms, on the right side the mass
forces, the pressure forces, and the friction forces.

Since Stokes! formulation is, of course, at first purely arbitrary,
it is not a priori certain whether the Navier-Stokes differential
equations describe the motion of a fluid correctly. They therefore
require verification, which is possible only by way of experimentation.
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Unfortunately, due to unsurmountable mathematical difficulties, a
general solution of the differential equation is not yet known, that is,

a solution where inertia and friction terms in the entire flow region
are of the same order of magnitude. However, known special solutions

(for instance, the pipe flow with predominant viscosity or cases with
large inertia effect) agree so well with the experimental findings,
that the general validity of Navier—Stokas differential equation hardly
seems questionable.

The plane problem:

By far the greatest part of the application of Navier—Stokes
differential equations concern "plane" cases, that is, the cases where
no fluild flows in one direction. The velocity vector w 1is then given

by

¥w=1u (x, y, t) + Jv (x, ¥, t) (k.1)

since w = 0. The equation system (equations (3.16) and (3.17)) then is
transformed into the 3 equations

B, w2, (2, )
o] (Bt + u = + Vv ay> pX + M + /

él ov W . v QEI Poln's

e (Bt M-I by) © Yy o 32 * 32 (k.2)
du ., OV _
ox * dy 0

with the three unknown factors u, v, p (X and Y are the components
of the mass force K per unit volume).-

After various minor transformations the equation system may be
written as a single equation. To this end one introduces the rotational
vector rot w which for the plane case has only gne component not
equalling zero:

1 cw, = k(X
§r°'°2"“°2'2(ax 8y> (-3)
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Furthermore, the mass force in equation (4.2) is put equal to zero.
This is permissible in all cases where the fluid is homogeneous and no
free surfaces are present. In order to introduce w, into equation (4.2),
the first equation of (4.2) is differentiated with respect to y, and
the second with respect to x; then the first is subtracted from the
second and one obtains:

|2 (2-2) . 2(2on) . 2z e
ot \ox Jy ox \ox JQy dy \ox 9y

. ai(ﬁ_@z)@i@_@) by
32\ NE x oy .

or

p<&uz Q, awz> ) u(BQwZ 82wz> m ()

With this transformation the pressure terms have been eliminated.
Equation (%.5) may now, with u/p =v, be written:

X0 - yAp (vorticity transport equation) (L.6)

Dt

with ® = w, belng denoted as the vorticity.

This equation signifies: The convective (substantial) variation
of the vortex strength equals the dissipation of vorticity by
friction.

Equation (4.6) forms with the equation of continuity a system of
two equations with two unknowns, namely u and v, the derivatives of
which define w.

By introducing a flow function V¥(x,y) one may finally introduce
a single equation with the unknown V. The flow function represents
the integral of the equation of continulty. One sets:

¥
u = Sy That 18, therefore, the
J > equation of continuity (4.7)
v = — N is identically *
3x satisfied by V.
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Moreover,

Sl _u\._ 1/, &\.__1
® e(al ay> z(ax2+ay2> v (4.8)

That is: The Laplacian of the flow function is exactly minus two times
as large as the vorticity (angular velocity). With this result
equation (4.5) becomes, after division by P:

9 9 9 -
(c)t +u . + v ay)Aﬂr VAAY (4.9)

or expressed only in V¥ with equation (4.7):

g‘%‘k+%%_g—*x.%=vmw (4.10)

This one equation with the unknown V¥ 1is the vorticity transport
equation, but written in terms of V.

The 1lnertia terms are agaln on the left, the viscosity terms on the
right side. Equation (4.10) is a differential equation of the fourth
order for the flow functlion. Again, its general solution 1s extremely
difficult because of the non-linearity. For very slow (creeping) motions
the friction terms very strongly predominate. Then one may set:

This simplification is permissible only because the differential equation
remains of the fourth order, so that no boundary condition 1s lost.
However, being linear, this equation is at least solvable. It appears
also In the theory of elasticity where it 1s designated as the bipotential
equation. There exists a solution of equation (4.11) by Stokes for
moving droplets,which was extended by Cunningham to very small drop
diameters (comparable to the mean free path of the molecules).

Herewith we shall conclude the more general considerations and turn
to the boundary layer problem proper, limiting ourselves to fluilds of
very small viscosity V.

A few preparatory considerations will lead up to the boundary layer
problem. One might conceive the notion of simply eliminating all the
friction terms of the Navier—Stokes! differential equation in the case of
small viscosity. However, this would be fundamentally wrong as wlll be

proved below,
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An equation which is completely analogous to equation (4.5) occurs
in the theory of heat transfer:

c(ég.;.u_ai.'.vé’e_):)“ &4.92_’8. (}412)
p L
ot ox oy ax2 By2

where the velocity components are retained whereas the rotation w
replaces the temperature 9, the denslty p the specific heat p

per unit volume, and the viscoesity pu the thermal conductivity A. On
the left of equation (4.12) stands the temperature change due to
convectlon, on the right the change due to heat transfer.

The temperature distribution around a heated body immersed in a
flow with the free stream velocity u (for instance fig. 8) is

determined by the differential equation (4.12). One perceives intuitively
that for small u, the temperature increase starting from the body
extends -toward the front and all sides far into the flow (solid contour)
whereas for large u, this influence 1s mainly limited to a thin layer
and a narrow wake (dashed contour).

The analogy of equations (4.12) and (4.5) indicates that the
friction—-rotation distribution in question must be similar: For small
free stream velocity the rotatlon is noticeable at large distance from
the body, whereas for large u, the rotation is limited to the immedlate .
neighborhood of the body.

Thus for rapid motions, that i1s, large Reynolds numbers (compare
next section), one expects the following solution of Navier—Stokes!
differential equations:

1. In the reglon outside of a thin boundary layer w = O, that 1s,
potential flow

2. Inside this thin boundary layer w # O, thus no potential flow.

Therefore, one must not set w = 0 1in this boundary layer, even
for small viscosity.

It is true that the potential flow 1es also a solution of Navier-
Stokes! differential equations, but 1t does not satlefy the boundary
layer condition v, = 0.

Proof: The potential flow may be derived from potential ¢(x,y,z)
as:

2 2 2
E=Srad®,withA¢=a°+ag+ag=0 (4.13)
x®  dy°
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However, 1f &b = O, then also grad AP = A grad® = 0, that is, Aw =0
for potential flow. According to equation (3.18) this fact signifies
that in the Navier—Stokes differential equations the friction terms
vanish identically, and hence that the potential flow actually satisfies
the Navler-Stokes differential equations. However, it satisfies only
the one boundary condition v, = 0.

Thus, for the limiting case of small viscosgity, one obtalns useful
solutions for the limiting process v —=> 0 not by cancelling the
friction terms in the differential equation, since this reduces 1its
order (the differential equation of the fourth order for the flow
function would turn into an equation of the second order; the Navier—
Stokes differential equations would change from the second to the first
order), so that one can satisfy only correspondingly fewsr boundary
conditions.

Thus the limiting process V¥ —>0 must not be performed in the
differential equation itself, but only in its solution.

This can be clearly demonstrated on an example (referred to for
comparison by Prandtl) of the solution of an ordinary differential
equation, Consider the damped oscillation of a mass point. The
differential equation

2
mdX X, ox-0 (4.14)
th dt

applies 1In which m repressnts the oscillating mass, k the damping
constant and ¢ the spring constant. (x = elongation, t = time).

Let for instance the two initial conditions be:
t=0; x=0; dx/at =1

In analogy to the cass in question one considers here the limiting
cage of a very small mass m, since then the term of the highest order
tends toward zero. If one would simply put m = O, one would treat
nothing but the differential equation

k ax + cx =0 (4.15)

which by aesuning the solution to be of the form x = A ext is
transformed into k A + ¢ = 0, whence X = —/k. That is, the
solution reads:
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(L.16)

However, the two initial conditions x = 0 and dx/dt = 1 at the
time t = O cannot be satisfied with this solution. But if one treats
the complete differential equation (4.14) in the same manner there results:

and hence:

or the square root might be developed into a series and (since now the

limiting process m—>0 1is to be performed) broken off after the
second term:

Thus xl corresponds to the previous solution of the first order
differential equation, where, however, Ao had been lost. For very

small m, kg ~ —k/m; therewith the general solution becomes, by
combination of the particular solutions,

c k
)“lt >“2t - =t - o
X =A e + A2 e =A e k7, A2 e I (4.17)
Since for t =0, x 1is also supposed to equal zero, there follows:
A2 = - Al’ thus:
- %t - %t
x = A e - e (4.18) .

This equation is plotted schematically in figure 9. The first term of
equation (4.18), which alone cannot satisfy the boundary conditions,

L J
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starts from the value Ay at the time t = O and decreases expo—
nentially. The second term is important only for small t—values and
plays no role for large t. It 1s very rapldly variable and assures
that the total solution (solid line) satisfies the boundary conditions.
"he slowly variable solution (in kl) corresponds to the potential flow,

the second, rapidly variable particular solution (in A indicates, as

)
2
it were, the narrow region of the boundary layer; the smaller m, the
narrower this region.

Herewith we shall conclude the general remarks and turn to the law
of similarity.

CHAPTER V. REYNOLDS' LAW of SIMILARITY

So far no genceral methods for the solution of the Navier—Stokes
differential equaticne are known. Sclutions that are valid for all
values of the viscosity are so far known only for a very few special
cages (for instance, Poiseullle's pipe flow). Meanwhile the problem
of flow in a viscous fluid has been tackled by starting from the limits,
that is, one has treated on the one hand flows of very great viscosity,
on the other hand flows of very esmall viscosity, since one obteins in
this manner certain mathematical simplifications. However, starting
from these limiting cases one cannot possibly interpolate for flows of
average viscosity.

The theoretical treatment of the limiting cases of very great and
very small viscosity is mathematically still very difficult. Thus
research on viscous fluides was undertaken largely from the experimental
slde. The Navier-Stokes differential equations offer very useful 1ndi-
cations, which permit a considerable reduction of the volume of experi-
mental investigation. The rules in Question are the so—called laws of
gimilarity.

The problem is: Under what condlitions are the forms of flows of
any liquids or gases around geometrically similarly shaped bodies them-
selves geometrlcally similar? Such flows are called mechanically similar.

Congider for instance the flows of two different fluids of different
velocities around two spheres of different size (fig. 10). Under what
conditions are the flows geometrically similar to each other? Obviously
this 18 the case when at points of similar position in the two flow
patterns the forces acting on volume elements at these pointe have the
same ratio. Depending on what kinds of forces are in effect, various
lawsg of similarity will result from this requirement.

Most important for this investigation 1s the case where all forces
except the inertia and friction forces are negligible. Furthermore, no
free surfaces are to be present, so that the effect of gravity is
compensated by the hydrostatic pressure. In this case the flow around
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the two spheres 1s geometrically similar when the inertia and friction
forces have the same ratio at every point.

The expressions for the inertia and viscoslity forces acting on the
volume elemsnt will now be derived: there is as friction force per

2
T
unit volume %; = é—g, whereas the lnertia force per unit volume isg
du %
p u —. The ratio
ox
pu
inertia force Ax (5.1)
friction force 2
du
" 2
dy

must, therefore, be the same at all points of the flow. One now inquires
as to the variation of these forces with variation in the quantitics
characteristic of the phenomenon: free stream velocity V, dlameter 4,
density p, and viscosity pu. For varlation of V and d +the indi-
vidual quantities in equation (5.1) at similarly located points vary

as follows:

2
u~V; -g—:rv%;MfV%
oy a
Therewith equation (5.1) becomes:
2
o L
inertia force -4 _ pvd - ng = Re (5.2)
friction force g% H v__

The law of mechanical simllarity ies therefore: The flows around
geometrically similar bodies similarly located and alined with respect
to the flow have, for equal p V d/u, geometrically similar stream
lines as well. If the flows in question are, for instance, two flows
of the same fluld of equal temperature and density (u and p equal) around
two spheres,one of which has a diameter twice that of the other, the flows
are geometrically similar provided that the free stream velocity for the
larger sphere has half the magnitude of that for the smaller sphere.
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The quantity p V d/u is,88 a quotient of two forces, & dimension—
less number. This fact is immediately recognized by substituting for
the quantities their dimenslons:

d S M
gec m2

pVd _ kg sec? m o m?

=1
M 4 sec kg sec

This law of similarity was discovered by Osborne Reynolds in his
studies of fluid flows in a pipe. The dimensionless quantity is called
after him:

oV d/u = V d/y = Re = Reynolds' number

The introduction of this dimensionless quantity helped greatly in
advancing the development of modern hydrodynamics.

Connection between Similarity and
Dimensional Ccnslderations

As is known, all physical laws can be expressed in a form free of
the units of measure. Thus the similarity consideration may be replaced
by a dimensional analysis. The following guantities appearing
in the Navier—Stokes differential equations are essential for the stream
line pattern: V, 4, p, u. The question is whethsr there i1s a combination

v aP Y ua

which is a Reynolds number and therefore has the dimension 1. This
amounts to determining a, B, 7, & 1in such a manner that

vaP o7 °=k°1° T =1 (5.3)

with K, L, T representing the symbols for force, length,and time,
respectively. Without 1imiting the generality a may be set equal to
unity (a = 1) since any power of a dimensionless quantity is still a
pure number. With a =1 there results from equation (5.3)
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[Vde‘ o7 “5] _ L8 KLi (ﬂ)s = KO 1O 7O (5.4)

By equating the exponents of L, T, K on the left and right sides one
obtains the three equations:

o)

K: y+ &=
L: 1+B —dy-26=0¢ (5.5)
T: 2y + 5 =1
/
The solution gives:
B=1; y=1; & =<1 (5.6)

Accordingly the only poseible dimensionless combination of V, 4, p, u
is the quotient

V_ﬁe = Re (5.7)

This dimensional analysis lacks the pictorial quality of the similarity
consideration; however, 1t offers the advantage of applicability even
when knowledge of the exact equation of motion is still missing, 1f
there i1s only known what physical quantities determine the phenomenon.

CHAPTER VI. EXACT SOLUTIONS OF THE NAVIER—STOKES EQUATIONS

In general, the problem of finding exact solutions of the Navier—
Stokes differential equations encounters insurmountable difficulties,
particularly because of the non—linearity of these equations which
prohibits application of the principle of superposition. Nevertheless
one can give exact solutions for a few special cases, mostly, whan the
second power terms vanish automatically. A few of these exact solutions
will be treated here.

One Investigates first layer flows in general, that is, flows
where only one velocity component exists which, moreover, 1e not
dependent on the' analagous position coordinate, whereas the two other
velocity components vanish identically; thus for instance:
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= u(y: Z, t)

=
|

(6.1)

vVEWEQ

The Navier—-Stokes differential equations (3.16) are thereby transformed
into:

\
2 2
p?:p]{—%&.{.u é_u.i.ﬂ
t ayE az2
O:pY——g-yE > (6.2)
oz -2
0=pZ oz
/

while the continuity equation is identically satisfied.

a. Plpe Flow, Steady and Starting

1. Steady pipe flow.

For the case of the pipe lying horizontally the mass forces are
everywhere constant, and the equation system (equation (6.2)) yields:

2 2 2
8—2 = O; ‘ é—g = O; a—p =0 (6.3)
a2 3y < 322

with the solution

P =8x + by + cz

Thus the pressure is & linear function of the position.

In the case of the pipe standing vertically (fig. 11) the mass
force 1s constant in the y-— and z—direction and increases in the
x—~direction corresponding to the hydrostatic pressure of the field of
gravity. Moreover, if one puts Y =0 and Z = O:

dp/dy = dp/dz = 0: v=w=0
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Thus there remains from equation (6.2)

2
9_2 =0 or gi = constant
axe

The system (equation (6.2)) then becomes, under the further assumption
of steady flow:

2 2
% , u _ %én = constant (6.4)
Bye 822

One tries a solution of the form

u = umax(a2+ by2 + cz2) (6.5)

with wup., representling the velocity at the pipe center. With the
condition u = 0 at the plpe wall y2 + 22 = r2 there results:

a=1; b=c==1/r?

and therefore

\
5 )
u(y, z) = lgnﬂ(l-———
1‘2 1‘2
with , % (6.6)
- _r<dp
Ymax by ox
/

This solution is identical with equations (2.3) and (2.4) if one bears
in mind that in those equations y represented the radial distance from
the pipe center. Thus Poiseuille's pipe flow was found as an exact
solution of the Navier-Stokes differential equations.

2. Starting flow through a pipe.

By the expression, "Starting flow through a pipe," the following
problem is meant: Let the fluid in a circular pipe of infinite length
be at rest until the time +t = O. At the time + = 0O let a pressure
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difference invariable with time, pl - pe, suddenly be established

across 2 piece of pipe of length 1, 8o that for the entire pipe ths
following equation applies:

t>0: — = 12 constant (6.7)

Here M # 0, and the inertia and friction terms balarce each other.

The solution of this problem, which will not be further discussed here,
was given by Szymanski (reference 12). The phenomenon is not dependent
on the longitudinal coordinate x. The velocity profiles at various times
can be seen from fig. 12. It is characteristic that, first, at the

pipe center, the velocity remains locally constant and the friction is
noticeable only in a thin layer near the surface. Only later does the
friction effect reach the pipe center. Poiseullle's parabolic profile

of the steady pipe flow is attained asymptotically for t—> o« .

One must clearly distinguish between the non—steady starting flow
through a pipe discussed here and the steady pipe inlet flow. This
latter is the flow at the inlet of a pipe. The rectangular velocity
profile present in the entrance cross section is, with increasing
distance x from the inlet, gradually transformed under the effect of

friction into Polseuille's parabolic profile. Since here %E % o,
X

this is not a layer flow. This inlet flow was, for the plane problem,
exactly calculated from the differential equations by H. Schlichting
(reference 14) and for the rotationally—symmetrical problem, according
to an approximate method, by L. Schiller (reference 32).

Third lecture (Dec. 15, 1941)
b. Plane Surface; a Surface Suddenly Set in Motion
and an QOsclllating Surface

1. Oscillating Surface.

Let a plane surface of infinite extent perform in its plane recti-
linear oscillations in the x-direction (fig. 13). The y-direction is
assumed normal to the surface. Let the oscillation take place with the
velocity u, = Acosnt, with A denoting the amplitude, n the

frequency of the oscillation., The fluid near the surface 1s carried along
by the friction. Since the surface is of infinite cxhent, the state of
flow is independent of x and z. The flow in question 1s therefore a
non-steady plan: layer flow for which
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u=u(y,t); v=w=0; o =0
ox

If, finally, one puts the mass forces equal to zero, the Navier—Stokes
differential equations (equation (3.16)) are reduced to

2
s;né =y ig (6.8)
&

with the boundary condition y =0, u-= u, cos n t. This equation has

the same structure as the differential equation for thermal expansion in
a rod (linear equation of heat conduction). It becomes identical with
it if v 1s replaced by the thermal conductivity a and wu by the
temperature (compare equation (4.12)).

For the solution of equation (6.8) one uses

u = 26X coe (nt - ky) (6.9)

where k 1is a constant to be determined.

Then
%% = —n Ae¥Y sin (nt - ky)
%% = —k Ae™™Y cos (nt — ky) + k Ae™®Y sin (nt — ky)
22 2. Xk
~ = — 2k“Ae™Y sin (nt - ky)
2
dy

Insertion in equation (6.8) gives nA = 2k°AV, and thence

K = \'Zl_ (6.10)
‘ v

Th- velocity distribution u(y, t) is therefo;g_an oscillation with

QE,

amplitule decreasing toward the outside Ae [ ; the layer at the
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distance y from the surface has & phase lag of \fé% y with respect to

the motion of the surface. The wave length A in the y—direction
follows from k\ = 2r as

A = 8L = 2p
X

52

(6.11)

Thus the co—osecillating layer is thinner, the greater the frequency n
and the smaller the viscosity v. The result A ~ \[V 1is to be noted.
The velocity profiles for various times are given in figure 13.

2. The Surface Suddenly Set in Motion.

Equation (6.8) yields another exact solution of the Navier—Stokes
differential equations, namely the flow §n the neighborhood of a plane
surface which suddenly starts moving in its own plane with the constant
velocity wug. In this case the boundary conditions are

- (6.12)

An appropriate variable for the solution 1s the dimensionless quantity

n=—i= (6.13)
2\[3?;

Ag the solution of equation (6.8) with the boundary conditions
equation (6.12) one obtains

) 2 u
u(y: t) =

V' Jn

an (6.14)

The correctncas of the solution 1s readily confirmed by substitution.
Ths variation of the flow with time is indicated in figure 14.

00
2
-
The probability integral appearing in equation (6.1k) ii-/ e i
T

I,
hag, for n = Ny = 1.9, the value 0.0l. Therefore, for n = Mg 2

u = 0,01 u,. The thickness of the layer carrizd alorng by ths friction
iz, thzrefore,
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.
8 =2y |Vt (6.15)

Thus here again the friction layer thickness is

s~\/7

At this point we conclude the discussion of layer flows and turn to &
few other exact solutions of Navier—Stokes differential equations.

¢. Plane Stagnation-Point Flow
The plane flow in the neighborhood of a stagnation point on a smooth

wall is conslidered. With the coerdinate system according to figure 15
the corresponding potential flow has the potential

o = % (xg - y2> (6.16)

and the stream function
V=axy
The velocity components are:
U=ax; V= -ay (a = constant) (6.17)

This is a potential flow which, coming from the direction of the y—axis,
encounters the solid wall y = 0, divides, and flows off parallel to

the x—axis. Whereas the potential flow glides along the wall, the viscous
flow must adhere to it. If one designates the velocity components of

the viscous flow by u(x, y) and v(x, y), the boundary conditions for
them are:

(6.18)

For the stream function of the viscous fluld one uses the equation:
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V(x, y) = x £(y) (6.19)
Thence one obtalns:
u=x -y f1(y)
dy

(6.20)
- £(v)

<
If

The boundary conditions (Equation (6.18)) require

y=0: r=1Ff' =20
(6.21)
y=w: f =ay; f' = a

At large distances from the surface, that is, in the potentlal flow, the
pressure 1s calculated from Bernoulli's equation

) pe=p, -2 =p -2a2(x?+?) (6.22)
. with W= VU2 + ve slgnifying the magnitude of the velocity of the

potential flow, given by equation (6.17). Let Po be the total pressure
of the potential flow,

For the viscous flow one formulates the analogous equation

p=po -2 [+ F(y)| (6.23)

With these equations one turns to the Navier—Stokes equations which read,
for vanishing mass forces:

N
du du 1 dp 82u 82u
U— + V — = = — } Y| — 4 ——
dy P dx 32 aye

. N 5 ’ (6.24)
u QK + Vv éi = — 1 QB +v °¥ , X
ox dy P Jdy 2 2
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The continuity equation has already been integrated by introduction of
the stream function V. By substitution of equations (6.20) and (6.23)
into equation (6.24) one obtains

2

x(f12 — £ ") = ax + vxf"

6.2

These are two differential equations for the two unknown functions

f(y) and F(y) which determine the velocity distribution and the
pregsure distribution, respectively. The component of the velocity wu
parallel to the surface, that is, the function f*(y), is of particular
interest. Since F (y) does not appear in the first equation, one
solves first the flrst equation and then, after substitution of this
solution, the second. Thus the differential equation to be solved reads
at first

2
F15 _f " = a2 4 o POV (6.26)
with the boundary conditions according to equation (6.21).
This non—-linear differential equation cannot be solved in closed
form. If on= introduces instead of y ths variable
E=ay (6.26a)
and in addition the similarity transformation

£(5) = Ap(E) (6.26b)

Then the Inhomogeneous term in equation (6.26) becomes equal to 1, and
the solutions th=arewith become independent of the specific data for the
flow. Thereby equation (6.26) becomes

\2 2
a2p2 39) —oi®
\at G

If one now equates a”A® = a2 and vAa,3 = 32, that is,

3
d

=82 4 vaad 22 (6.27)
ae>
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A= \’v a; a = \/% (6.27a)

the differential equation for o¢(f) with ¢ = V%'y reads:

P+ P O" = T 4 1 =0 (6.28)

with the boundary conditions

§=°°: q)':l

The solution found by serles development can be found In the thesls of
Hiemenz (reference 10), compare table 1*, The velocity component
parallel to the surface 1s

£1(y) = @*(¢) (6.29)

s
®

It is indicated in figure 16. The curve o@'(&) increases linearly at

€ = 0 and approaches one asymptotically. For about & = 2.6, o' % 0.99;

thus within about one percent of the flinal value. If one again designates
the corresponding disgtance from the surface y = & as the boundary layer

thickness (friction layer thickness), then

t = 2.6\/% (6.30)

Thus in this flow, as in the former ones,

o
I
-

8~ |V

It 18 also remarkable that the dimensionless velocity distributlon
according to equation (6.29) and the boundary layer thickness according
to equation (6.30) are independent of x, thus do not vary along the wall.

*Phe tables appear in appendix, chapter XII.
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For later applications the characteristics important for the friction
layer, displacement thickness &% and momentum thickness 9, are

Introduced here; they are defined by

wB* = f (U ) a5 (6.31)
y=0

Uee =/m u(U - u) dy (6.32)
J=0

The displacement thickness gives the deflection of the stream lines of
the potential flow from the surface by the frictlon layer; the momentum
thickness 1s a measure of the momentum loss in the friction layer. By
insertion of equation (6.29) in (6.31) and (6.32) and calculation of the
definite integral one finds

.V =
5* _\/;LO (1L - o) d& = o.6u82\f§ (6.33)
fb
R =\/Zj o' (1 — ') at = 0.2923\/171 (6.34)
8 §=O a
and hence
§*= 2.218 (6.35)

The quantity ©* 1is indicated in figure 16. For comparison with a
later approximate solution one also notes the numerical value of the

2
dimensionless quantity 9%— %g. One finds from equations (6.17) and (6.33)
5*2 au
vV dx

The exact solution of the Navier—Stokes 4ifferential equations found
here gives, therefore,: for large Reynolds numbers a friction layer

thicknese decreasing with \/%: and a transverse pressure gradlent
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decreasing with pa\fva. Both confirm the boundary layer assumptions*
to be discussed later.

d. Convergent and Divergent Channel

A further class of exact solutions of the Navier—Stokes differential
equations exists for the convergent and divergent channel with plane walls
(fig. 17), as glven by G. Hamel (reference 11).

Without entering into the details of the rather complicated calcu—
lations the character of the solutions will be briefly sketched:

The velocity distributions for convergent channels, plotted against
distance along the surface for varlous included angles a and for various
Re—numbers appear as indicated in figure 18. At the tunnel center the
veloclity 1s almost constant, and at the surfaces 1t suddenly declines to zero.

In the case of divergent tunnels one obtains greatly differing
forms far the velocity profiles, depending on the included angle and
the Re-number. Here all velocity profiles have two inflection points.
For small Re-numbers and small included angles the veloclty 1s positive
over the entire cross section (solid curve in fig. 19); for larger angles
and larger Re—-numbers, on the other hand, the velocity profiles have
reverse flow at the surface (dashed curve in fig. 19). The reverse flow
is the initial phase of a vortex formation and therefore of the separation
of the flow from the surface. Generally, the separation does not occur
symmetrically on both surfaces; the flow separates from one side and
adheres to the other surface (fig. 20).

These examples also confirm the theory that exact splutions have the same
character as approximate solutions of boundary layer theory; in particular,
they confirm that for the convergent channel a very thin layer with con—
siderable friction effect 1s present near the surface (here also the
calculation shows that the layer thickness ~ \[y) and that for the
divergent channel reverse flow and separation occur.

We here conclude the chapter on the exact solutions of the Navier—
Stokes differential equations and turn to the approximate solutlons.
By exact solutions have been understood those where in the Navier—Stokes
differential equations all terms are taken into consideration that, in
the various cases, are not ldentically zero. By approximate solutions
of the Navier—Stokes differential equations will be understood, in
contrast, solutions where terms of small magnitude are neglected in the
differential equations themselves. However, by no means are all the
friction terms to be neglected simultaneously, since this would represent
the case of potential flow,

*The rotationally-eymmetrical stagnation-point flow has been
calculated by Homann (reference 17). Instead of equation (6.28) one

obtains the differential equation o'" + 299" — 2 + 1 =0,
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CHAPTER VII. VERY SLOW MOTION (STOKES, OSEEN)

The exact solutions of the Navlier—Stokes differential equations
discussed in the previous chapter are of a very speclal kind. Most of
them dealt with flows along a plane surface, where the stream lines
are rectilinear. Most flows exlsting in practice, as for instance flows
around arbitrary bodies, cannot be calculated exactly from the Navier—
Stokes differential equations, but must be treated by approximate methods.
Two kinds of such approximations are possible:

l. For predominant viscosity, completely neglecting the inertla terms
suggests itself (very emall Re—number; Re< 1).

2. For very small viscosity and therefore predominant inertia one
takes the viscosity into consideration only in a very thin
layer in the neighborhood of the solid wall; for the rest,
the flow is regarded as frictionless. Here the Re—number is
very large (Prandtl's boundary layer theory).

The first limiting case with very small Re—number will be discussed
in this chapter. A small Re—number indicates small velocities, emall
body dimensions, and large viscosity. Since the inertia terms depend
on the square of the velocity whereas the friction terms are linear,
all inertia terms in the Navier-Stokes differential equations are, for
very small Re-numbers, negligible. It 18 to be expected that an
approximation will thereby be obtained for very slow (creeping) motion,
as for instance the falling of a minute fog particle*) or the slow
motion of a body in a very viscld oil.

~ Neglecting all inertia terms one obtalns from the Navier—Stokes
differential equations (3.16) the following:

2o
%WAM (7.1)
2

g—‘;+%+%’=o (7.2)

#*For a sphere falling in air (v = 1k X 10‘6 m?/sec) for instance:
Re =VdAN =1, for 4 =1mm; V =1.40 cm/sec.

]
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The same boundary conditions apply to this system of equations as apply
to the complete Navier—Stokes differential equations, namely vanishing

of the normal component v, =0 and the tangential component vy = 0

at the boundlng surfaces.

The neglect of all inertia terms in Navier—Stokes differential
equations does not represent as serious an inaccuracy as the neglect of

all friction terms when transforming the Navier—Stokes differential
equations iInto Euler's differential esquations of the frictionless flow.
That 1s, by neglecting the inertia terms, the order of the differential
equations is not lowered so that in the simplified differential equations
the same boundary conditions as in the Navier—Stokes complete differential
equations can still be satisfled.

Furthermore one obtaina from the equations (7.1l), taking into
account the continulty, by differentiating the first with respect to x,
the second with respect to y, the third with respect to 2z, the following
equation for the pressure p

2 2 2
8_§+§_.§+5_§=Ap=o (7.3)
ox oy oz

that is, for creeping motions the pressure function p(x, y, z) 1s a
potential function.

The detalls of the calculation will not be discussed more thoroughly,
particularly since the creeping motion 1s technically not very lnportant.
However, at least Stokes! famous solution for the sphere will be discussed
briefly (fig. 21). The draeg of a sphere for creeping motion consists of
the contributions of the pressure drag (form drag) and the surface frig—

ion drag. The latter is obtained by integration of the wall shearing
stress over the entire sphere surface. Stokes performed the integration
of the equation systems (7.1) and (7.2) for a sphere in & uniform

flow of velocity U,. There results, according to Stokes, for the entire

drag of the sphere of radius R:

W= Wbr + Wh = 6 muR Ub (7.4)

The drag 18, therefore, proportional to the first power of the velocity.
If one introduces for the sphere a drag coefficient ¢y which, in the
customary manner, is referred to the frontal area and the dynamic pressure
of the free stream velocity
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W=oc, n R £, (7.5)

¢, = —; Re = —— (7.6)

One can state immediately that the stream line pattern of this
creeping motion must be the sam= ahead of and behind the sphere since
for reversal of the initial flow (sign reversal of the velocity
components) the equation system (equation (7.1)) goes over into itself.
The stream—line pattern for the viscous sphere flow, as it presents
itself to an observer who is at rest relative to the flow at infinity,
is shown in figure 22, The fluld particles are pushed aslde by the
sphere in front and come together again behind it.

As shown by a comparison of Stokes' drag formula equation (7.6)
with test results (reference 33), this formula is valid only for the
region Re < 1.

Correction by Oseen

In Oseen's later improfement of Stokes! solution for the sphere
the Inertia terms iIn the differentlal equations are partly taken Into
congideration., Oseen formulates the velocity components u, v, w:

u=U,+u; v=vH; w=w (7.7)

where ut', v', w' may be consldered as disturbance velocities which in
general are small compared with the free stream velocity U,. This

assumption is not actually correct for ths immediate proximity of the
sphere surface, With the formulation (equation (7.7)) the inertia terms
in squation (3.16) are divided into two groups, for instance:

Yo g&i, Uo g%l, « « o+ &and ut gﬁi, u? g%l, « o e

The second group of second order, as compared with the first group, 1s

neglected., Therewith one then obtaing Trom the Navier—Gtokes e=qiations
of motion (3.1A) the rollowling —quatiors of motion, which are taken as

a basia by Oeecn.
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ou? ép_ )
U = = '
° x +ax Hou
p U T+ Roav (7.8)
ow!  Op
Pl 5 15 T

In addition, one uses the continuity equation:

dut N ov! N owt _ 0
ox oy dz

(7.9)

and the same boundary conditions as in the Navlier—Stokes differential
equations. One calls the contributions of the convective terms 19 these
equations that were taken into consideration, for instance U, g&-, the

semi—quadratic terms. These differential equations of Oseen and Stokes!
differential equations are both linear. The stream line pattern, as it
results for this sphere flow according to Oseen, 1s given in figure 23.
Here again the observer is at rest relative to the fluid at large distance
from the sphere., Thus the sphere is dragged paset the observer with the
velocity Up. The stream line pattern ahead of and behind the sphere are
now not the same, as was the case in Stokes' solution. Ahead of the
sphere exists almost the same displacement flow as in Stokes'! pattern;
behind the sphere, however, the stream lines are closer together, that is
the velocity 1s greater here than in Stokes' case. A wake 1s present
behind the sphere similar to that from test resulte for large Reynolds
numbers,

For the sphere drag calculated by Stokes there resulte with the
drag coefficient c, introduced in equation (7.5) the formula:

UuD
cw=%(l+f6-Re);Re =—3— (7.10)

The test results (reference 33) show that Oseent's formula 1s fairly
accurate up to about Re = 5,

With these brief remarks we conclude the limiting case of small
Reynolds numbers and turn to the case which is of forsmost interest in

practice: the case of very large Reynolds number.
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CHAPTER VIII. PRANDTL'S BOUNDARY LAYER EQUATIONS

The other extreme case of very small viscosity or of very large
Reynolde number will now be treated. In this case the inertla effects
are predominant within tke main body of the fluid whereas the viscosity
effects there are almost negligible.

A slgnificant advance 1n the treatment of motion of flulds for
large Reynolds numbers, that is, in general, of flulds of very small
viscosity, was attained by L. Prandtl in 1904 (reference 7). Prandtl
demonstrated in what way viscosity 1s essentlal for large Reynolds
numbers and how one can simplify the Navier-Stokes differential equations
in order to obtaln at least approximate solutions.

Let us consider the motion of fluld cof very small viscosity, for
instance of alr or water surrounding a cylindricel streamline body
(fig. 24). Up to very near the surface the velocities are of the order
of magnitude of the free stream velocity U,. The stream line pattern |

as well as the velocity distribution agree to a large extent with those !
of the frictionless fluid (potential flow). More thorough investigations :
show, however, that the fluid by no means glides along the surface (a~

in potential flow) but adheres to it. The transition from zero velocity
at the surface to the fully developed veloclity as it exists at some
distance from the body, is effected 1n a very thin layer. Thus one must
distinguish hetween two regions which, 1t 1s true, cannot be rigorously
separated:

1. A thin layer in the immediate proximity of the body where the
velocity gradient normal to the surface n is very large

(boundary layer). Here the viscosity u, though very small,
plays an essential role inasmuch as the frictional shearing
gtress T = p éﬁ can agsume conslderable values.

on

2. In the remaining reglon outside of this layer wvelocity gradlents
of such magnitude do not occur, so that there the effect of
viscosity becomes insignificant. Here frictionless potential
flow prevalls.

In general one may say that the boundary layer is thinner, the
smaller the viscosity or, more generally, the larger the Re—number. It
was shown before on the basis of exact solutions of the Navier-—Stokes
differential equations that the boundary layer thickness s

5~V_\T ’

The approximations to the Navier—Stokes differential equations to be made
below are more valld the thinner the boundary layer. Thus the solutlons
of the boundary layer equations have an asymptotic character for infinitely
increasing Reynolds numbers.
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Let us now make the'simplifications of the Navier—Stokes differential
equations for the boundary layer. To this end the order of magnitude of
the separate terms of the Navier—Stokes differential equations must be
estimated. One considers the flow around a cylindrical body according
to figure 24. One imagines the Navier—Stokes differential equations
written non—dimensionally, by referring all velocities to the free stream
velocity U, and the lengths to a body length 1. The pressure will be
‘made %i?ensionless with p U02, the time with Z/Uo. Furthermore

Re = =2~ represents the Reynolds number. Accordingly, the Navier—Stokes
v

differential equations become — omitting the mass forces according to
equation (4.2), by writing the same letters for the dimensionless quantities
as for the dimensional ones -

N
2 2
sﬂ+u5_+v§_u=_§+§.1+u
t ¥y NN
1 11 5% 52 1 1/8°
2 2
?+uﬁ+v§‘l=—ﬁ+la_v .a_v > (8.1)
t
ax oy 9 R ax2 2
2 1
5 18 & 1 52 & 5
él-.}.-a—v:o
ox dy
1 1 J

The estimatlion gives: Longitidinal velocity wu 18 of the order of
magnitude 1. Dimensionless boundary layer thickness 8/1<<l. Therefrom
follows:

§—u- > i' 8_211 ~o L
»
¥ B 2 g2

whereas the derivatives with respect to x are of normal order of
magnitude, thus
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From the continuity equation follows therefore:e

o)
ov

—al: v = Q!fvs

oy dy

The transverse velocity v 1In the boundary layer is therefore, to the
first order, small in comparison with the longitudinal velocity. Further
there follows:

ov %y Fv 1
ox 2 2 5
ox dy

Thus there result for the single terms of Navier—Stokes differential
equations the orders of magnitude noted in equation (8.1): On the right
side iIn the first equation

Pu o
x> oyt

so that it can be neglected

One now obtalns within the boundary layer friction terms which are
of the same order of magnitude as the inertia terms, 1if l/R is of the
order of magnitude 52, or, 1f the dimensional quantities are again
written,

L

5 . Y A
1 \R \/zuo (8.2)

In the second equation of motion all terms then are of the order of

magnitude 8, 1ncluding the traneverse pressure gradient %B. In the

Y
boundary layer, as long as it i1s thin, the dependence of the pressure
on y may therefore be neglected. Thus approximately the same pressure
prevells within the boundary layer as at 1ts edge, that 1s, the pressure
of the potential Flow. The pressure within the boundary layer 1s therefore,

ag 1t were,impreased by ths potential flow.

The second equation of motion is therewith exhausted and does not
have to be considered further. Using again the dimensional quantities
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one now makes the Navier—Stokes differential equations assume the following
simplified form:

'\
i+ua_u+v§2=_l§£+v.a.2_u
Bt ox By pax aye
> (8.3)
u, ¥_,
ox oy
/

Boundary conditions: y = 0: u
y:oo u

It
<<

The pressure in the boundary layer, which is dependent only on x, is
determined from the potential flow U (x, t), assumed to be known
according to Bernoulli's equation.

\
P+ g v? = Py + g er for stationary flow
or > (8.4)
~19p =T U + §H for nonstationary flow
p Ox ox ot

With the potential flow known, the equation system (8.3) represents
a system of two equations with the two unknowns u and v.

Numerical example: In order to help clarify the concepts a numerical
example 18 given for the thickness of the boundary layer. The problem is:
What is the boundary layer thickness, for instance, in the case of the
plate 1n longitudinal flow at the distance 1 = 100 centimeters from the
leading edge? Let the velocity be ugy = 30 meters per second and the

kinematic viscosity for air Vv = 0.14 X lO—h meters square per second;
L=2.1x 10° ana JE = 1.45 x 103.
A numerical factor 1s still missing in the formula (8.2) for the boundary
layer thickness. For the plate in longitudinal flow it 1g, as later
calculations will show, five, provided one understands by the boundary
thickness & that distance from the surface where the velocity has the
value 0.99 ug. Thus a calculation by the formula

then the Reynolds number is R = U,

~ O

5.0
\/R
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results for the present case in a boundary layer thickness & = 3.45 mm.
It should be added that the Reynolds number is already so large that the
boundary layer at the end of the plate would be turbulent. The transition
from laminar to turbulent lles further upstream, and at this point the
boundary layer thicknees would then be somewhat smaller than the value
determined above.

Fourth lecture on December 22, 1942

Phyeical Summary and Conclusions

The physical content of the considerations so far can be summed up
in the following sentences:

l., In a very thin layer on the body, the boundary layer, the
veloclity passes from the value zero at the surface to the
value which the potential flow would have in the nelghborhood
of the surface.

2. The pressure in the boundary layer 1s practically independent
of the coordinate normal to the surface and equals the
pressure of the potential flow along the surface.

3. In the boundary layer the only frictlon force to be taken into

conslderation is the shearing stress 7 = u QB.

L. (without proof) The curvature of the surface may be neglected
in the boundary layer as long as the radius of curvature is

large compared with the boundary layer thickness (Boltz,
Thesis, (reference 9)).

5. All these considerations are valid only as long as no separation
of the flow from the surface occurs.

Without integration of the boundary layer equations one can draw from
these sentences important physical conclusions as to the flow pattern:

In particular separation occure if a transport of boundary layer material
fnto the interior of the fluld takes place. If a region with pressure
increase exists along the body contour, the retarded fluid in the boundary
layer is in general, because of its small kinetic energy, not able to
penetrate too far into the region of higher pressure. It then withdraws
laterally from the region of higher pressure, separating from the body,
and is deflected into the interior (fig. 25). As the point of separation
one defines the boundary between forward flow and reverse flow of the
layer nearest the surface, thus
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point of separation: <§§) = 0% (8.5)
J=0

Determining when and where separation occurs requires for each case the
integration of the boundary layer equations.

One can readily understand that for the velocity profile u(y) at
the separation point and for all velocity profiles in the decelerating

flow (%Z- > O) an inflection point** must be present. From equation (8.3)

namely, for the surface y = O there follows immediately the relation

3

-4 (8.6)
2 dx
oy v

=0

The curvature of the velocity profile at the surface therefore exchanges
signs with the pressure gradient. Thus for flow with pressure decrease

dp d%u

(accelerated flow -—= < O), — <0 1is valid and therefore
32 dx oy surface

also &2 <0 1in the entire boundary layer (fig. 26). TFor the region
3" a 32

of the pressure increase (decelerating flow, Exg > O) <S-y% >0,

surface

However, since 1n any case at larger distances from the surface
2
é—% <0, there must exlst, for decelerating flow, within the boundary
o 3%u
layer a point where — = 0 (inflection point) (fig. 27). For
oy

decelerating potential flow the boundary layer profile has, therefore,
an inflection point. Since the separation profile with vanishing surface
tangent must necessarily have an inflection point, it follows that
separation can occur only when the potential flow 1s decelerating

&%)

* The velocity profile at the point of separation therefore starte
with a vanishing tangent (fig. 25). Velocity profiles behind the point
of separation have reverse flow in the neighborhood of the surface (fig. 25).

** The presence of an inflection point is significant for the
stabl1ity of the velocity profile (transition from laminar to turbulent,

compare chapter XXI Part II.)




50 NACA TM No. 1217

If separation 1s present, the potential flow can no longer envelop
the body closely everywhere. Thus the pressure distribution sometimes
deviates considerably from that given by the potential theory. In such
cases the pressure varilation impressed on the boundary layer can in
most cases be determined only empirically, because the frictionless outer
flow itself depends on the complicated phenomena connected with the
separation.

Thus the boundary layer theory explains also the fact that in
addition to the frictional drag & pure pressure drag, called "form drag,"
appears.

In regard to later calculations the following explanation shall be
given: If equation (8.3) is differentiated with respect to y, there
results for statlionary flow

u———a2u+éé+v§2_u+.alﬁ=_£aep +Va3u (87)
oxdy Jy ox By2 dy oy p Oxdy ay3 | .
Due to %? = 0 and to the boundary conditionge u = v = O one obtains

from equation (8.7) for the surface y = O the relation

3
5_% =0 (8.8)
ay surface

which is valid for all stationary boundary layer profiles (presgure
increase and pressure decrease).

Frictional Drag

As a result of the integration of the boundary layer equation one
obtains the veloclity distribution and the separation point and can there—
from calculate the particularly interesting surface friction drag in ‘he
following manner. The friction drag Wg results from the integration of
the surface shearing stress over the surface of the body. For the plane
case one obtains, with the symbols according to figure 28, for the friction
drag

A

WR = 2b T, cos @ ds (8.9)

8=0
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The integration has to be extended over both sides of the surface from
the stagnation point to the separation point (s = 1'), b signifies the

tl

height of the cylindrica:. body. Because cos 9 ds = dx and Ty = K (§5>
Y /o

one obtaing for the friction drag
WF = 2bu <5§> dx (8.10)

This integration also has to be extended along both sides of the body.
For calculation of the friction drag one needs, therefore, the velocity
gradlent at the surface. The latter can only be obtained by integration
of the boundary—layer differential equations. If the separation point
appears ahezad of the trailing edge, the formula has to be applied only
up to the separation point or, sometimes, up to the point of laminar—to—
turbulent transition which is located furthér upstream. Behind this
transition polnt exlsts turbulent surface friction drag. In order to
obtain the total drag, the form drag has to be added to this friction
drag; however, the form drag cannot be obtained from the boundary layer
calculation in a simple manner.

CHAPTER IX. EXACT SOLUTIONS OF THE BOUNDARY LAYER
EQUATIONS FOR THE PLANE PRCBLEM

a. The Flat Plate in Longitudinal Flow

One of the simplest examples for the application of the boundary
layer equations (8.3) is the flow along a flat plate. Let the plate
begin at x = 0, extend parallel to the x-axis, and be Infinitely
long (fig. 29). Let the stationary flow of the free stream velocity Ug
be treated. The calculations for it were made by H. Blasius (reference 8)
in his GOttingen thesis. 1In this case the velocity of the potential flow
is constant, thus dp/dx = 0. The boundary layer equations (8.3) become
therefore

s )
ou Ju ., 0u
u-a-—+v—a——\l—2
X Yy ay
a9, 1)
L v [ "
dx Jy
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with the boundary conditions
(9.1a)

Since the entire system has no characteristic length, the assumption
suggests itself that the veloclty profiles at various distances x are
affine to each other, so that one may write u/U, = ¢ (y/®). Let therein
5 = d(x) represent a measure of the boundary layer thickness, increasing
with the length of run., One arrlves at an estimate of the boundary layer
thickness in the following manner:

According to the former exact solutions of Navier—Stokes equations
(chapter VI), for instance for the non—-stationary problem of the surface
suddenly set in motion,

B~ |Vt

with t denoting the time since the beginning of the motion. Applied
to the present stationary problem one may substlitute for the time t the
time required by a fluid particle to travel from the leading edge of the

plate to the point x. This time t = é£ and one has, therefore, for
o]

the present case

v (9.2)

Thus it 18 useful to introduce for the dlstance from the surface y the
new dimenslonless coordinate 1 = y/& or according to equation (9.2)

Uy
y \[%; (9.3)

For further calculations one observes that

=]
il

The continuity equation is again integrated by introduction of the stream
function ; for th: latter one assumes




NACK TM Ne. 1217 2

v o= ivx nor(n) (9.4)

Accoriivgly F(n) 1s a 4imasionloge gtream furctior; for the velouivy
components oree obtaing from wquaticn (9.k)

ov v &
:——:—OJ.: >t I3
ST dn oy Uy ) (9:)
\
ML N R AN < TC) I BPAY M Y
TS T TR G ) g - g2 2t
> (9.6)

2
ou _ 1 UO £ du UO ", aeu _ Uo ftn
. ==y Sag (S RS2 (9.7)
dx 2 x oy VY 2 vVx
Ay
. By irnsertion of these values in equation (9.1) there results
2 2
u U U
- =2 Af " 4 & (qft—f) £" =v -2 e
2% 2x Xy

or, after simplifying, the following differential equation for the stream
“unction f(n)

f "+ 21" =0 (9.8)

Because of equation (9.1a) and of equations (9.5) and (9.6) the boundary
conditiong are

T]=O: f':f':o;nzoo; fr =1 . (9.9)

For ih+ present cage therefore, there results from the two partial
- 41 fferential equations (9.1), by the similarity transformation (equation
(9.:)), an ordinary non-linear differential equation of the third order.
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The three boundary conditions according to equation (9.9) are sufficient
for a unique determination of the function f(n) from this equation

A particular solution of the differential equation (9.8) is the
solution

f = n + constant

This solution corresponds to the potentlal flow; we shall revert to it
presently.

The general solution of the differential equation (9.8) cannot be
given in closed form. Therefore one must calculate it either by numerical
methods or by series developments. Blasius obtained the solution by a
power series development near 1 = O and an agymptotic development
near n =o, which are combined at an appropriate point. Since the
method of calculation 1e characteristic of the solution of the boundary
layer differential equations 1t will be described in more detail. The
power series around n = 0 1s formulated in the form

\
A
f(n) = AO + Aln + g% qz + E% q3 + e e
A
f"(n)=A2+A3q+—)iq2+f\2q3+. .. S (9.10)

21 3!

" Bl
£1" () A3 + A o+ " ne + 3 3+ ...

/

Because of the boundary conditions for 7 = O one has immediately

By insertion of the equations (9.10) into the differential equation (9.8)
one obtains

2 3
2 =
2A3+q2Ah+12]T<A2‘+2A5)+I31-!—(hA2A3+2A6)+,,, 0

In order to make the equation (9.10) represent a solution of the differ—
ential equation 1t 1s required that in the last equation all coefficlents

of the single powers of n vanish., First, one has immedlately A3 = A, = 0%

and further

#*Thig aleo follows at once from equations (8.6) and (8.8).



NACA TM No. 1217 55

By == G Ay g = T A

Thus only the coefficlents Ag, A5, A8. . + » are different from zero.

The coefficlent A, remains at first undetermined since the third boundary
condition for n = was not yet satisfied. The remaining coefficients

A5, A8, All' . . can all be expressed in terms of A2. One therefore
sets up, with A, = a, a serles for f(n) which progresses by powers
of q3, in the following form:

00

n+1 3n+2
f = i 11
( )n (3n+2)! L (9:11)

n=o0

The results for the first coefficients are:

Q
1§

Q
I

27897; C 3 817137

]
1]

The asymptotic development near n = e is formulated in the form

f=f +f+ ... (9.12)

where the higher approximations are to be small in comparison with the

lower approximations, for instance f2 << fl. The first asymptotic

approximation to correspond to the potential flow 1s, as was mentioned
above,

=n—-B (9.13)

For this approximation fl = 0, and one obtains therefore by replacing
the quantity ff" 1in the d1fferential equation (9.8) by f;fy" the

following equation for the second asymptotic approximation:
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(n—B) £y« 2fft =0

2
or
on
ji =L (-
or
log f2 = % Bn — % n2 + C

If one substitutes for the Integration constant C = —Be/h + log 7,
(y 1e thus a new integration constant) one obtains

2

-t (-8

f"2 =7 e
and after integration

2

- (-8

£y =y e dn _ (9.14)
q:oe

Because fi (») =1 and fé (») = 0, the solution f' = fi + fé

satisfies the third boundary condition f' (®) = 1. Another integration
of equation (9.14) gives as second asymptotic solution for f = £, + 5

n n 1 2
-1 (n = B)
f=n=B+9y[ dn/ e dn (9.15)
00

This solution still contains two integration constants f and vy
corresponding to the fact that only one of the three boundary conditions
was satiefied. The asymptotic solution can, 1n the same manner, be
improved still farther by equating f = f; + f, + f3. The differential

equation for f3 was solved by Blaslus; a more detailed discussion ise

unnecessary.
These two solutlons, the power series near n = 0 according to

equation (9.11) and the asymptotic solution near n =« according to
equation (9.15) now have to be Joined together and the three integration
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constants a, B and y have thereby tc be determined, This is =ffected
in the following way: At a point 7 = nys where both solutlons are

gserviceable, f, f' and f" from the power series and th:z asymptotic
solution are brought to agreement. Because of the differential
equatlon (9.8) the higher derivatives will then automatically agree.

In thls manner one obtains three equations for ths three unknown
integration constants. The numerical calculation gives

a=0.332; B =1.73; ¥ = 0.231

A table for f, f', f" taken from a treatise by L. Howarth (reference 18)
18 given in table 2*%. The velocity distribution in the boundary layer
u/UO = f*(n) according to equation (9.5) 1e represented in figure 30.

In comparison with the stagnation point profile (fig. 16) it is striking
that the velocity profile of the plate flow near the surface has a very
slight curvature. 2At the surface i1tself 1t has an inflection point, that

1, for y = 0O: é—% = 0.

oy
The transverse component of the velocity 1n the boundary layer
given by equation (9.6) 1e plotted in figure 31. It is noteworthy that
outside of the friction layer, for n -«

[vu
V = Vg = 0.865 Uy 70

The fact that on ths outer edge of the boundary layer the transverse
component v ¥ 0 1is caused by the deflection of the potentiel flow from
the body due to the boundary layer thickness increasing downstream. For
very large distances from the wall (far in the potential flow) the
boundeary layer solution does not go over exactly into the undistrubed
potential flow u = Uy; v = 0. This has to be tolerated as a (very
slight) deficiency of the boundary layer solution.

For the present case a separation of the boundary layer does not
exist since the pressure gradlent equals zero.

Friction Drag

From the solution given above the surface frictlon drag of the
plate in longitudinal flow is to be calculated. According to equation (8.9)
the friction drag for one slde of the plate is

* See appendix,chapter XII.
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W= T dx = bu (52) ) dx (9.16)

with b denoting the width, 1 the length of the plate. According to
equations (9.7) and (9.11)

(Q-u-) = Uy U—g f"(o) = o\l o=
(o]

Therewith the local surface shearing stress 1s

‘/U \,U
T, = au Uy ‘-’-°; = 0.332u U, ﬁ (9.17)

The friction drag according to equation (9.16) is therewith

2
U
W = aub UO\I-VQ/ \}% =22 b Uo\,p.pZUo

X=0

and therefore the drag of the plate wetted on both sldes is

W
2 = had \[U3 up 1
> (9.18)
- 1.328 b\,UO3 up 1
/

If one introduces in the customary manner a dimensionless drag coefficient
by the equation

& = — (F=2b 1 = wetted area)

one obtains for the drag coefficlient the formula

o, =328 (Re - UO—1> (9.19)
VRe Y
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Displacement Thickness of the Boundary Layer

By the development of the boundary layer on the plate, which
increases downstream with \Jx, the potential flow is deflected outward
from the surface by an amount ©®*, which 1s called the displacement
thickness of the boundary layer. It can be easily calculated from the
velocity distribution in the boundary layer, as follows: Let y; denote
a point outside the boundary layer; then according to the definition
for ©o*%

y.'l.
udy = Uo<yl - 5*)
y=o0
or
NEY
5% = 1 — 2 .20
< U;>dy (9.20)
y=o

According to equation (9.5)

¥, y

1
(-] Beroh
n=0
-_-\/% Ell - f(nl{]

Since the polnt g = ull lies outside of the boundary layer, one can put

y=0

for f(n) the first approximation of the asymptotic solution according
to equation (9.13), thus

f(ny) =ny =B =1 - 1.73

Thus one finds for the displacement thickneass of the boundary layer




60 NACA TM No. 1217

5% = 1.75[‘& (9.21)
UO

The distance from the surface y = 8* 1is also shown in figure 30. Thus
the stream lines of the potential flow are, because of the friction
effect, deflected outward by this amount.

The actual boundary layer thickness & cannot be given accurately
since the frictlon effect in the boundary layer thickness decreases
asymptotically toward the outside. The component of velocity parallel
to ths surface u is asymptotically converted into the velocity Uo

of ths potential flow (the function f%(7n) asymptotically approaches the
value 1). If one wants to define the boundary layer thickness as the
point where the velocity u = 0.99 U, (full value), one obtains for it

according to table 2, 17 = 5.0. Therewith one hag for the thus defined

boundary layer thiclkness
- \’Vf
5 = 5.0 U_— (9.21&)

(o)

The thus defined boundary layer thickness equals about three times the
displacement thickness of the boundary layer.

Let here also be introduced the value for the momentum thickness 9,
necded later. This latter 1s a measure for the momentum loss due to
friction in the boundary layer and is, as indicated before in equation (6.32),
defined by the equation

u u
3 = 2 l-—-—)d,y
UO( UO
y=o

The calculatlion results, because of equation (9.5), in

00

3 = £1(1 — £1)dy ;’I—x = 0.664 %’5 (9.21b)
[e] (o]

n=0

Finally the form parameter becom=s therewith
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2—* = 2.605 (9.21c)

Experimental investigations of the laminar boundary layer on the flat

plate were performed by B. G. van der Hegge Zynen (reference 19) and

M. Hansen (reference 20). In all essential points the theoretical results

were well confirmed. The measurements showed that the laminar boundary

layer exists to about the Reynolds number (U, x/v) = 3.5 to 5 X 107,
crit

if x denotes the length of run of the boundary layer. For larger
Reynolds numbers transition to the turbulent state of flow takes place.

Fifth lecture on January 5, 1942.
b. The Boundary Layer on the Cylinder (symmetrical case)

The Integration method of Blasius glven in the previous section
was used by Hiemenz (thesis Gottingen 1911) for calculating the boundary
layer on the circular cylinder. The same method was later further extended
by Howarth (reference 15) to the general case of a cylindrical body of
arbitrary cross section. This method will be briefly presented for the
symmetrical case. One conslders (fig. 32) a cylindrical body with
symmetrical cross section in a flow approaching in the direction of the
symmetry axis with the velocity U,. Let x be the arc length along

the contour, measured from the front stagnation point, y the vertical
distance from the surface. ILet the potential flow U(x) be given by
its power series development in x. At the stagnation point (x = 0),
U(x) = 0, and for the symmetrical case only the 0dd terms of the power
serles are different from zero. Therefore:

3 5

U(x) = u X+ u3x + u5x e e . (9.22)

The coefficients Uy s u3, . « » depend solely on the shape of the
body and are therefore quantities known from the potential flow.

The statlonary boundary layer equations according to equation (8.3)
are also valid for this case with a curved surface and therefore read:

5 )
u gE + v gﬂ =U EH + Vv §_5
X Y dx 8y2
du, v _ > (9.23)
ox 9y
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From equation (9.22) one obtains for the pressure term:

[ 2
3u
= u, [ulx + hu3x3 + < ug + ui >x5 + .. :] (9.24)

The continuity equation 1s again integrated by the stream function:

U

£

L P
n=5 T o (9.25)

It is now necessary to find a sultable formuwlation for the velocity
distribution u(x, y), v(x, y) and therewith for the stream

function V¥(x, y). In analogy to equation (9.22) a power series in x
suggests itself for u(x, y) as well, with coefficients, however, which
are dependent on y. It 1s Important to find a form where the coeffi-—
cients (or functions) dependent on y have a universal character, that
1s, need not be calculated anew for each shape of body, but may be calcu—
lated once for all. Howarth (reference 15) succeeded in finding such a
formulation.

For the distance from the surface one introduces the dimensionless
varlable:

n = y\E—l *(9.26)

The expression (9.24) for the pressure term suggests that the following
equation be selected for ¥

v 3 5 53
¥ =:VGI ulel(n) + hu3x f3(n) + 6x u535(q) + —EI-h5(n)J + e e e (9.27)

This yields: (' = differentiation with respect to 17):
2

—il-h% + e e (9.28)

u

- ' 3oy 5
u o= u xf] o+ hu3x f3 + 6x iusg% +
[

*One obtains this equation from that of Blasius according to
equation (9.3) by substituting for U, the first term of the series

equation (9.22).
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ou

<
I
|
|

2
u u
CLIY e wxf" + bu Of" + 6x° |u g" + EEERN
oy v 11 3 3 575 u, 9

1217

u
M _ oy oproy 12u X261 + 30x* |u gt ¢ —3— Bt | +
ox 11 303 55 Y4 5

u

1 L 3pen 5 | ot 4 2 pan
v QX"+ hu3x f3 + 6x 588" + o h5

Y lu,f, + 12u.x°f, + 30xu u + 3
ul 171 3 3 ul

63

(9.29)

> (9.30)

> (9.31)

(9.32)

After insertion of the expressions (9.24) and (9.28) to (9.32) into the
first equation (9.23) one obtainse by comparison of ths coefficients a
system of ordinary differential equations for the unknown functions fl,

fg: 851

terms with
u_x
bu_u_x3

fu,1_x"

175
6u x>
3

h

5 , which appears as follows:

gives the differential equation

f2 —ff" =1+ ft"

1 11 1
1L " - " o_ 1t

hflf3 3flf3 f1f3 1+ f3
Tt __ " _ "o_ n

6f1gl — 5fjes — f18f = 1 + &l

6PThY — 5F"h — £ h" = = + h!" — 8(£1° — f
15 15 15 2 5 3

")

33

7

> (9.33)

Formalation of the flow function according to equation (9.27) nas
thug accomplish:d th. elimination of the coefficients iepending on body
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shape (ul, u .) from the differential equations fdr the functions

fi, f

3

. which thus now have a universal character.

l, 3’ .

The boundary conditions for the functions fl, f3, . » » follow

from

by comparison of equation (9.28) with equation (9.22); they are

=0: f =f1=0; f_ =f'=0; =g' =0
L 17 373 &5 = &5
h=h'=0 o o
5 > ’ (9.34)
1 1
—ew: fr=1; fr=2; gLl proo,, .
nEes Y 374 85 7% ;

The differential equations (9.33) are all of the third order, and
equation (9.34) gives three boundary conditions for each. The differen—
tial equation for f,(n) is non-linear and is identical with the differ—
ential equation (6.2%) obtained in chapter VI for the stagnation point
flow: f; =¢; n=¢&, as follows by comparison of equation (6.26a)

with equation (6.26). All the remaining differential equations in
equation (9.33) are linear, with the coefficients determined by the
functions of the preceding approximations.

The solutions of the differential equatlons (9.33) are best obtained
by numerical integration. The functions f; and f3 were already

celculated by Hiemenz (reference 10). Howarth (reference 15) improved
the tables for f and recently Nils Frdssling (reference 16) calculated
35 and hg as well. The fi which is identical with ¢' according to

equation (6.28) was already given in figure 16. The function f§ can be

seen from figure 33, the functions g% and hé from figure 34. Th-

numerical values are compiled in table 3.

Concerning the applicability of this calculation method 1t miat b
mentioned that for slender body shapes the series for U(x) and u(x,y)
converge poorly. The reason is, that for thesc body shapes U(x) has
a very stecp ascent In the neighborhood of the stagnation point (fig. 39),
while showing a rather flat curve further on. Gucn a function carnot be
developed readlly into a Taylor series. For such body shapes many more of
the functions of the differential—equation system (9.33) would be required
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than have been calculated so far. For blunt bodles, as for instance the
circular cylinder, the cunvergence 1is conslderably better sc that one
proceeds rather far with thie calculation although not always up to the

point of separatlon.

Howarth (reference 15) also performed the corresponding calculation
for the unsymmetrical case where the even coefficlente algo appear in
the power series for U(x). This 1s the case for a symmetrical body
at an angle of attack and quite generally for any unsymmetrical body.

Froseling (reference 16) made the application to the rotationally
symmetrical case.

Circular Cylinder

The boundary layer on the circular cylinder will be treated as an
example for the application of this method. Whereas Hiemenz (reference 10)
took a pressure distribution measured by him as the basis for this case,
we shall here calculate with the potential—theoretical pressure distribution.
The velocity distributlion of the potential flow reads, with the symbols
according to figure 36,

U(x) = 2U, sin @ = 2U, sin if- (9.35)

The power series development gives:

U(x) = 2 U % - éL.<£)3 + é?‘<%>5 + . .] (9.36)

In comparison with equation (9.22):

=]
a

U

- °. - — 2. -
uy = 2 = u3 = 31

0 2

Therewith follows from equation (9.26):

\FUOR L \/U"D (9.37)

v

It follows that for the velocity dis“ribution from equation (9.28)
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1 u(x, ] 3 1 5
—M=ff'—{-<¥> f"+—<§><6g%+20h%)—+... (9.38)

One further calculates the position of the separatlon point x, which
is, according to equation (8.5) determined by K ) = 0, Therewith

y=0
results from equation (9.36):

]
(@}

X . x \3
nio)y A 'L pe _éj
£1(0) 2 = 55 £1(0) KR, (9.38a)

0.7246 one finde:

With th= numerical values fi(O) = 1.23264; fg(O)

X *

A o
-2 = 1,60; = .
R Y 92 (9.39)

Hiemenz (reference 10) based his calculation on his experimental
pressure dlstribution; he calculated the separation point to be at
®, = 82°, whereas his measurements gave ®, = 81°. This result is

considerably different from that obtained with the potential—theoretical
pressure distribution. The reason is that for a body as blunt as the
circular cylinder the experimental and the potential-—theoretical pressure
distribution in the neighborhood of the separation point differ greatly.

‘'The method described here of calculating the boundary layer by a
power—geries development starting from ths stagnation point has found
but, little acceptance because of the extensive calculation required.

It t¢, howsver, indigpensable for fundamental considerations, since there
exist no other exact solutions of the differential equations of the
boundary layer for the flow about & body.

Thus approximation methods came into use for the practical per—
formance of boundary layer calculationg; they will be discussed in the
following chapter. It is true that thelr accuracy is sometimes consider—
ably lowsr than that of the previously discussed exact solutions.

c. Wake behind the Flat Plate In Longitudinal Flow

The application of the boundary layer equations is not absolutely
l1'mlted to the pregence of solid walls. They may also be applied if
there ig pregent within the flow a layer in which the friction effect 1s

“Thia result varleg somewhat 1T in the gerics development
equation (9.33a), one takes further terms Into congideration. However,
for this purpooe one woald have to calculate at least up to the term x'.
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predomirant, This ls the case for Instance when within the flow two

layers of different veloclties adjoin, as for Ilnstance in the wake region
behind a body or at the outflow from an opening. In this and the following
chapter we shall treat two examples of such flows which we shall later
encounter again in the discussion of turbulent flows.

The wake flow behind the flat plate in longitudinal flow is chosen
as the first example (fig. 37). At the trailing edge of the plate the
two boundary layer profiles grow together and form a "wake profile" the
width of which increases with distance while the veloclty decrement at
its center decreases. The size of the "wake" 1s directly connected with
the drag of the body. Otherwlse, however, the form of the velocity
distribution in the wake at a large distance from the body is not dependent
on the shape of the body, whereas the velocity distributlion very close
behind the body naturally depends on the boundary layer of the body and
on any exlisting separation.

From the velocity distributlon measured 1In thz wake one may cal—
culate the drag by means of the momentum theorem in the followlng manner.
The momentum theorem states: The variation of the momentum with time
( = momentum flow through a control area fixed in space) equals the
sum of the resultant forces. By resultant forces one has to understand:

1. Pressure forces on the control area, 2. Extraneous forces, which are
transferred from solid bodies to the flowing fluid, for instance the
shearing stress at the surface which gives the friction drag. For the
present case the control area AA\BB; 1is placed as indicated in figure 38.

Let the boundary Al'Bl which is parallel to the plate be so far distant

from it that it lies everywhere in the undisturbed velocity U, Further—
more, the rear cross section BBy 1s to lie so far behind the plate that

the static pressure there has the same undisturbed value as in front of
the plate. Then the pressure 1s constant on the entire control area, so
that the pressure forces make no contribution. In calculating the

momsntum flow through this control area one has to consider that, due to
continuity, fluld must flow out through the boundary AlBl’ namely the

difference between the larger quantity flowlng through the cross
gection AA; and the smaller quantity flowing through the cross

section BB,. The cross section AB does not make a contribution to the
x—momentum, since for reasons of symmetry the transverse velocity on it
equals zero. The momentum balance is given in the table below, with
enterlng momentums counted as positive, outgoing ones as negative.
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gince for

The integration therein may be extended from y = 0 +to
from y =0 to h,
vanishes.

therefore:

Mass 3
Cross section -3 Momentum floy 1@ x—direction
) /sec = volume X density x velocity
AB 0] 0
—
h h
AA v U dy b U°a
1 o P o @
o
h h
B B, ~b| udy ~p bl u°dy
o}
h h
AlBl -D (UO - u)dy - P b UO (UO - u) dy
o o}
Z = ZMass Z Momentum Flow
Control area =0 =W
The total momentum loss of the flow for the present case equals the
drag W of one side of the plate. Thus one obtains
W=> u (UO - u) dy u (UO - u) dy (9.40)
o

0

o, 1instead of

¥y > h the integrand in equation (9.40)
For th= drag of the plate wetted on both sides one obtains
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+00

W = bp u(Uy—u) dy (9.41)

In equations (9.40) and (9.41) the integrals are to be extended over the
wake as Indicated at a distance behind the plate where the static pressure
has its undisturbed value. However, one may naturally apply equations
(9.40) and (9.41) also to the boundary layer on the plate at a certain
point x; then they give the drag of the part of the plate from the
leading edge to this point. The definite integrals in equations (9.40)
and (9.41) represent physically the momentum loss due to the friction
effect, As mentioned before, i1t 1s customary to introduce for this
integral also the momentum loss thicknese 9 by the following equation
compare equation (6.32)).

- u) dy (9.42)

y=0

Therewith the formula for the drag may also be written, by comparison
with equation (9.40):

2
W=bpU, 9 (9.43)

The velocity distribution in the wake, particularly at large
distance x behind the plate in longitudinal flow (fig. 37) is to be
calculated next. This calculation must be performed in two steps:

1. By a development "from the front", that is, by a calculation which
followg the further development of the Blaslus—boundary layer profille
present at the trailing edge of the plate. 2. By a development "from
the rear" that is, by an asymptotic calculation for the wake, under the
agsumption that the difference veloclity

uy (x, y) = Uy —u(x, y) (9.44)

i3 amall.

The first calculation was performed by S. Goldstein (reference 21)
and 1s very troublesome; the second was indicated by Tollmien (reference 3)
and yields rather simple laws, in particular also an exact solution of the
differential boundary layer equation. Since such exact solutions are
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comparatively rare and since, moreover, the asymptotic law for the wake
applies not only for the flat plate in longitudinal flow but for any
arbitrary body shape, this asymptotic solution will be treated here
somewhat more thoroughly. The wake velocity ul(x, y) introduced in

equation (9.44) is assumed to be so small in comparison with the free
stream velocity U_ that the second—power terms (ul/Uo) are negligible

relative to 1. Moreover, the pressure term dp/dx in the boundary layer
equation 1s to be set equal to zero for the first asymptotic approximation.
Therewith the differential boundary layer equation (8.3) becomes, for the
present case:

2
du )
v, =L-y 21 (9.45)
° X 2
oy
With the boundary conditions:
Ju
y:o: —1-=O
oy
(9.45a)

For the solution of the differential equation (9.45) one introduces as
before in the plate flow according to Blasius! equation (9.3) the new
variable

_
n=y ;% (9.146)

Further, one uses for ul the equation:

n =t o (3)

The distance x from the trailing edge of the plate 1s thus made

1
2g(n) (9.47)

1
dimensionless by dividing by the plate length. The power - 3 for x

18 given bv the fact that the momentum Integral which, according to
equation (¥.41) gives the plate drag must be independent of x. With
the eecond—power terms neglected the drag of the plate wetted on both
sides 18, according to equation (9.41):
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+0o0
MW =D pU, 0y dy (9.48)
y=—0
Onz2 finds further:
+o8 -1 +o +oo
u_ (x,y)dy = U c(£)2!-’£ (n)an = u_c\[%2 (n)dn  (9.49)
1 »y - o 1 UO g "'I n = 0 E; g "1 71 M
) — oo T]'_‘_Q —0e
and therewith:
+ o
2
20 =bpU, C\/%l g(n) dn (9.50)
o)

The calculation of the single terms in equation (9.45) gives:

)
du -
1
s -Us(3) 7 fler e
Ju ..l{U_-
1 o}
—==u,Cc(%, 2 \-- ' .51
- o ¢ (%) e ’ (9.51)
aeul [ X —%l "
v 2:U0C\T> x 8
dy /

By insertion into equation (9.45) one obtains after division by
-4
2 -
C Uy (x/1) 2 1 the following differential equation for the velocity
distribution g(n):

1 1
g+ 5 et + 58=0 (9.52)
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with the boundary conditions:

1]:0: g‘:o;nzw: 8:0

A single integration glives:

g' +

no -

ng€&=K=20

where, because of the boundary condition at n = 0, the integration
constant K must be zero. Repeated integration glves the solution:

o F

g =8 (9.53)

where a multiplicative integration constant may be put equal to one
without 1limiting the generality since the velocity distribution uy

still contains, according to equation (9.47), the multiplicative free
congtant C. This constant C 1is determined from the consideration
that the plate drag obtained from the momentum loss (equation (9.50))
must be the same as the frictional drag of the plate. First,

+o0 +o nE
L
g(n) an =| e dn = 2\

and therewith from. equation (9.50):

_ 2 vy —_
2W=pbDb Uo CHUO 2\[!(

On the other hand, the frictlon drag of the plate wetted on both sides
was according to the solution of Blasius (equation (9.18))

W =1.328 p Uog\ﬁ’,—?
o

Therefrom follows 2C \Vn = 1.328 and
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(9.54)

Thus the final solution for the wake velocity for the flat plate in
longitudinal flow becomes:

1 y2y

- — (0]

2 - .66 (3) A (9.55)
Uo \,n 1

The velocity distribution of this asymptotic law is represented in

figure 39. It 1s noteworthy that the functlon for the velocity distribution
is identical with Gauss' error function. In keeping with the hypothesis

the law according to equation (9.55) is valid only for large distances
behind the plate, according to the calculations by Tollmien (reference 3)

for x 2 31.

The development of the wake from the front, performed by Goldstein
is valid only for comparatively small x/l. However, for intermediate
x/1 both solutions can be Joined to some extent, so that one then obtains
the velocity distribution in the entire wake. Such a figure is given by
Tollmien (reference 3).

Sixth Lecture on January 12, 1942,

d. The Plane Jet

A further example of a flow without bounding wall to which the
boundary layer theory is applicable is the outflow of a Jet from a hole.
The problem to be treated is the plane stationary one where the Jet goes
out from a long narrow slot and mixes with the surrounding fluid at rest.
This is one of the rare cases where the differential boundary layer
equations may be integrated exactly. The calculations were performed by
H. Schlichting (reference 22) and W. Bickley (reference 30) and will be
discussed a little more thoroughly.

Due to the friction effect the Jet entrains a part of the fluid at

rest and sweeps it along.
one drawn in figure 4O,

There results a stream-line pattern like the
Let the x—direction coincide with the Jet axie

and the origin lie in the slot.

It then immediately becomes clear that

the width of the Jet increases with the distance

x and the mid—veloclty

decreaseg with the distance x. For the calculation the slot 1s assumed
to be infinitely narrow., 1In order to make the volume of flow, together
with its momentum, finite, the velocity in the slot is then infinitely
large. Again, as in the previous example concerning the wake flow, the

pregsure term dp/dx may be neglected since the pressure varies only
very little in the x—dlrection. The smallness of the pressure term can
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also be shown subsequently from the finished solution. Thus the differ—
ential boundary layer equations for the present case read, according to
equation (8.3):

-
2
u—+ Vv éE =Y é_E
X y ay2
’ (9.56)
du , ov _
&+Fy—0
/
with the boundary conditions:
= 0: v = du _
y—O V—O, 3;—0
) (9.56a)
y:m u:o

Since the pressure is constant, the entire momentum flow in the x-—
direction for control area fixed in space (compare figure 40) must be
independent of the distance from the hole x. If one chooses the lateral
boundaries of the control area at so large a distance from the axis that
there u = 0, then

+00
J=op udy = Constant (9.57)

—00

It 18 to be noted for the Integration of the equation of motion

equation (9.56) that for this problem, as before for the plate in longi-
tudinal flow, no special length—dimension exists. Thus affinity of the
velocity profiles u(x, y) is suggested, that is: with b signifying

a suitable width of the Jet, the velocity profiles are only functions

of y/b. Accordingly one uses the following expression for the stream

function
V=X f‘( ) = X f'< (9.58)

X
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The two — at first unknown — exponents p and q are determined from
the conditions that

1., the momentum flow for the x—direction 's independent of x
according to equation (9.57), and that

2. the acceleration terms, for instance u QE, and the 1inertia

ox
term in equation (9.56) are of the same order of magnitude
and hence mist be of the same degree in Xx.

Thie ylelds the two equations

2p —q =0
(9.59)
2p —29-1=p-3q
It follows: that
p=1/3; q=2/3 (9.60)

Therewith the final equations, after addition of sultable constant factors,
read as follows:

= —_— 9.61)
k 1/2 2/3
3v X
2 1
v = vl/ x /3 £(n) (9.62)
Therefrom one obtqins, with
-2/3

on__21 ong_x
x 317 1/2

3V

the following expressions for the velocity components and thelr derivatives:
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> (9.63)

S
ox

By substitution into the differential equation (9.56) there results,
-5
after cancelling the factor g? X /3, the following differential equation

for the flow function f(y):

£12 4 PP 4 £17 = O (9.64)

with the boundary conditions:

(9.6ka)

As for Blasius' plate flow here also an ordinary differential equation (9.64)
was obtained from the two partial differential equations (9.56) by means of
the similarity transformation equation (9.61). Here also, as in most
boundary-layer problems, the differential equation is non-llnear and of

th= third order.

The integration of this differential equation (9.64) 1s attained in
a gurprleingly simple manner. First, one obtains by a single integration

ff! + " = Constant = O (2.65)
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The constant of integration therein 1s zero becauss of the boundary
condition f"(o) = 0. The second order differential equation now obtained
could be integrated once more if a factor 2 were present in the first
term. This factor can be obtained by performing the following further
simllarity transformation:

One puts: £ = an (9.66)

Hy
1]

2a F(&) (9.67)

a 1s a free constant which is determined later. With the equations (9.66)
and (9.67) one obtains from equation (9.65), the prime now signifying
differentiation with respect to §&,

F" + 2FF!

1
o

(9.68)
with the boundary conditions:
£=0: F=0; tE=w: F'=0 (9.68a)
This differential equation can now be integrated again and ylelds
Ft 4 F2 =K

The constant of integration K 1is obtained from the boundary conditions,
equation (9.68a), as K = 1, 1f one stipulates F'(o) = 1, which is
posaible without limiting the gen.rality because a 1is still present as
a free constant in F. One now has for F +the first order non-linear
differential equation

F' 4 Fo = 1 (9.69)

which is a Riccati differential equation. The integration yields

and therewith for the inverse function
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-t
F =tanh& = ——~ ___ (9.70)

Furthermore, %% =1 - tan® £, If one inserts the solution found nto

equation (9.63), one obtains for the veloclty distribution

— A
u = % af x 3(1 —tanhlt) (9.71)

The velocity distribution over the width of the Jet calculated from this
equation is represented in figure 41. The free constant a remains to
be determined. This can be done from the condition (equation (9.57))
according to which the momentum flow in the x—direction is independent
of x. From equation (9.71) and (9.57) one obtains

2
7=8p a2 (1 ~ tanft ) at = 19—6 o oy1/2 (9.72)

0]

w

Let the momentum J for the Jet be a prescribed constant which is, for
instance, directly related to the excess pressure under which the Jet
flows from the slot. Then a Dbecomes, according to equation (9.72),

a = 0.8255 —7 (9.73)

pv

and therewith thes velocity distribution
l A
, /3

0.4543 | —— <l—ta.nh2§>
p"vx

o
1]

<
1}

. 1/3
0.5503 K—%> ot (1-— tanh<t )—tanhé 3 (9.74)
X

2/3

’ 1/3
£ = 0.2752 —J—2 J
pv X
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The value of the transverse component of the velocity at the edge of the
Jet (y = «) also is noteworthy. From equation (9.74) one finds for
this lateral Inflow velocity

1/3
(Jv)

2
px/s

Ve = — 0.550 (9.75)

Ons= can further calculate the flow volume for a layver of unit height

+ 00 .
Q= j[ u dy. One finds

—o

Jvx 1/3
- 3.3019 (—p——) (5.76)

o

Ths f'low vcoclume Increases downstream, since fluid at rest 1s carried
along from the gide.

The solutlon indicated here naturally has a singular point at
- x = 0, sgince an infinitely narrow slot with Infinitely large exit
velocity was assumed, Actually for a narrow slot of finite width one
hag immediately behind the slot opening a veloclty distrlbution that is
rectangular across the Jet cross gectlon but which at some distance 1s
- transformed into the bell—shaped distribution found here with width
2/3 -1/3

b~ x and mid-velocity ~ x

Finally it should be mentioned that the corresponding rotationally—
svimmetrical problem where the Jet goes out from a very small circular
hole also can be golved In cloged form. (compare H. Schlichting
(reference 22)). In thie case the width of the Jet 1s proportional to x
and the midveloclty proportional to x .

¢, The: Boundary Layer for the Potentlal Flow U = ulxm.

Annothor claco of exact soluticono of the boundary layer equations
will b~ divcusaed hriefly which Includes the plate 1n longlitudinal flow
v b ctagnation polnt {low ag speclal cases. Falkner and Skan
fes s 37) have shown Lhat, Just as for Blasiug'! plate flow, the

ey layer AifTorential ocquat Jone for the potentlal flow

Hx) oo v (:
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can be reduced by a similarity transformation to an ordinary differential
equation (uy = constant, m > O accelerated, m < O retarded flow). For
m>0, x =0 1is the stagnation point of the flow., For m = O one
obtains U = uy = Uy, thsrefore the plate flow; m =1 gives U = up X,

therefore the stagnation point flow according to equation (6.17).

The differentlal equations of the boundary layer read

2
u du + Vv Su_yd + v 07u

ox By dx hayg

_5_u+a_v=o
ox  dy
The pressure term becomes
om-1
T =nu? x
dx 1

Ag a new independent variable one introduces

m—1
u 2
£ = ,,m—ﬂ \’—ly x (9.78)
2 v

and the continuity equation ies integrated by introduction of a stream
function for which one uses the equation:

m+l

2
v \/ v o) (9.79)

m+ 1

One has

and one obtainsg
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=gz 9 (E) = Upt() (9.80)

\’ Vvu X 2 {m + 1 o + 2= 1 £ @'} (9.81)
m+ 1 2

After 1insertion into the first equation of motion and division by

a 2x2m—l

1 one obtainsg, when

= B (9.82)

the following differential equation for o(&):
(R 1" '2
" = —p" + B (' -1) (9.83)
Boundary conditionsa:
E=0: =9 =0; ¢t = @'=1

The differential equation (9.83) was solved for different values by
Hartree (reference 38). The result 1s given in figure 4la. The
corresponding values of B and m s&re given in the following table.




82 NACA TM No. 1217

m B
-0.0654 ~0.1k4
0 0
0.111 0.2
0.333 0.5
1 1
I 1.6

For accelerated flow (m > 0, B > 0) one obtains velocity profiles
without inflection points, for retarded flow (m< 0, B< 0) veloclty
profiles with inflection points. Separation occurs for

B =~ 0.199, that 1gym = — 0.091

-0.091
Separation takes place for the potential flow U(x) = u x 9 s thus

for very weax retardation, Compare chapter XI a, where almost the game
regult is obtained from an approximation calculation.

Special cases:

1. Stagnation point flow: It 1g obtained for

u

Then ¢ = 1% y; ¥= \/v u, X p(t). These are the same expressions as
for the stagnation point flow, equation (6.26a) and (6.27a), also (6.19)
and (6.26b). Ths differential equation (9.83) alsc is transformed into

the squation of the stagnation point flow (equation (6.28)).

2. Plate In longitudinal flow: This case is obtalned for
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Then & = — H _ with n signifying Blasius!
VQ vx vx Y
variable according to equation (9.3) Furthermore, ¥V  becomes

VE; \R;ﬁ;;' p(E); thus 9 = j% compared with the expression

for § for the plate flow equation (9.4). Because of do o&f
at  dn

e (E) = \EE f"(n), and o@'"(t) = 2f'"(n), ths differential equation (9.83)

is for this case transformed into 2f'"(n) + ff"(n) = O. This i1s identical
with equation (9.8).

»

CHAPTER X. APPROXIMATE SOLUTION OF THE BOUNDARY LAYER EQUATION
BY MEANS OF THE MOMENTUM Td4EOREM
(KARMAN-POHLHAUSEN METHOD, PLANE PROBLEM)

a. The Flat Plate in Longitudinal Flow

The examples of exact solutions of the boundary layer equation
discusgsed in the previous chapter give sufficient proof of the rather
considerable mathematical difficulties in solving the differential
equation, Yet ths examples treated were selected as simple as possible.
In somes other cases the mathematical calculations are still more difficult
than in those examplee. Particularly the problem of flow about a body
of arbitrarily prescribed shape cannot, in general, be solved by exact
solution of the differential equations of the boundary layer. Just this
problem, however, 1s of apecial practical Importance, for instance for
thz calculation of the boundary layers on alrplane wings.

There exists therefore a tendency to apply at least approximate
methods, even if thelr accuracy is sometimes not quite satisfactory,
for cases where the exact solution cannot be obtained with a reasonable
expenditure of calculation time. Such simpler approximate sclutions can
be attained if one does not attempt to satlsfy the differential boundary
layer equation for every particle of fluld. Instead one selects a
plausible expression for the velocity distribution 1n the boundary layer
and satisfies merely the momentum equatlion which i1e obtained by inte—
gration from the equation of motion. A method on this basis for the
plane problem of flow about an arbltrary body was worked out by von Kerman
and Pohlhansen (references 23 and 24). We shall try out this method in
this chapter at first on the simpler case of the flat plate 1in longi-
tudinal flow, where no pressure variations exist. For this special case
the momentum theorem yields the statement that the momentum loss of the
flow through a control area fixed in space according to figure 42 equals
the friction drag W(x) of the plate from the leading edge (x = 0) %o
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the point x. Application of the momentum theorem for this case was
discussed in detail in chapter IX; for the drag of the plate wetted on
one side according to equation (9.40) it had resulted in the formula:
[~ 9
W(x) =b p u (U, — u) dy (10.1)
y=0
On the other hand the friction drag can also be expressed as the Integral
of the surface shearing stress, namely:
b'e
W(x) = b To (x) dx (10.2)
X=0

In forming the integral (equation (10.1)) it is to be noted that the
Integrand outside of the boundary layer, where u = Uy, does not make

a contribution. By comparison of equations (10.1) and (10.2) it follows
that:

e u(U-wa (10.3)

If one introduces moreover the momentum loss thickness, as defined in
equation (9.42), equation (10.3) can also be written in the form:

4

d3d o
pc=t.-_9 10.4
o 3 5 ( )

This is the momentum theorem of the boundary layer for the special case
of the flat plate in longitudinal flow. Physically 1t states that the
surface shearing stress equals the momentum loss in the friction layer,
glnce in the present case the pressure gradient makes no contribution.
Th= next chapter will acquaint us with the extension of equation (10..4)
to include the more general case of a boundary layer ~ith pressure
difference.

Equations (10.L4) and (10.3), respectively, will now be used for
approximate calculation of the friction layer on the flat plate in
longitudinal flow. A comparison of the results of this approximate
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calculation with the exact solution according to chapter IXa will give
information about the usefulness of the approximation method. For the
approximate calculatlon one selects a sulitable expression for the
velocity distribution in the boundary layer in the form:

'y
u=Uof(g>

"

Uy, £(n) (10.5)

with

5(x) (10.6)

P
0]
o)<
.o
o
il

5 repregsents the boundary layer thickness, undetermined at first. For
the flat plate it may, moreover, be assumed again that the velocity
profiles at various distances from the leading edge of the plate are
affine to each other. This assumption 1s contained in equation (10.5)
if f(n) there stands for a function which no longer contalns any free
parameters. Furthermore, f(n) must, for large values 17, assume the
conatant value 1.

The velocity distribution being given by equation (10.5), the
momentum integral in equation (10.3) may be evaluated. It ylelds:

- 1
u (U, —u) dy = U3 £ (1 - £) dn (10.7)
[0} T]=O
The definite integral in equation (10.7) can be calculated immediately
if a definite formulation is given for f(n). Thus one puts
1
a = f(1 - f) dn (10.8)

n=0
Hence

2
U 9= u(Uo —u)dy =ab U, (10.9)
y=0

or:

3=abd (10.10)
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Furthermore, the displacement thickness of the boundary layer &% becomses,
according to equation (9.20):

5% = & (L= *) 4n = o® (10.10a)

On the other hand, the shearing stress T at the surface 1s:

To / du VUO VUO

L.y = —2 £t(0) = - 10.11

. \ay> 2 17(0) = p — (10.11)
y=0

1f one 1Introduces the further simplification
B = f*(0) (10.12)

By introduction of these expressions into the momentum equation (10.4)
there results:

B—=L=-U° 8 (10.13)

or

5 L -BY (10.1k4)
dx « UO

The integration with the initial value & =0 for x = 0 yields, as

first result of the calculation:

5 = \féé \/"E (10.15)
a Uo

Hence the shearing stress becomes, according to equation (10.11):

T, = \/ﬁ qu\/E (10.16)
2 VX
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and furthermore
1

To dx = \/[2aB \/uon3Z

and hence, flnally, the total drag of the plate wetted on both sides
according to equation (10.2):

20 = 2b \[2aB \[uon3z (10.17)

A comparison of the results for boundary layer thickness, surface shearing
stress, ana total drag, which were thus found, with the corresponding
formulas for the exact solution according to equation (9. . .) shows that
the approximate calculation according to the momentum theorem reproduces
the characteristics of the formulas with perfect correctness in all cases,
that 1s, the dependence of the boundary layer quantities on the length

of run x, the free stream velocity U,, and the viscosity coef-
ficlent V. The numbers a, B, unknown at first, can be determined only
after making special assumptions for the velocity distribution, that is,
explicitly prescribing the function f(7n) 1in equation (10.5).

Numerical examples

The usefulness of the method of approximation will be investigated
by a few numerical examples. The accuracy of the results will depend to
a great extent on a suitable cholce of the expression for the veloclty
distribution according to equation (10.5). At any rate the function f(q)
must equal zero for n = O and have the constant value 1 for large 1.
As first example we select the very rough assumption that ths velocity
distribution in the boundary layer 1s represented by a linear function
according to figure 43a. Thus:

1: f(n)

1: f(n)

0 S-n

]
=

(10.18)

v
1
-

n

Hence the results for the numbers a, B according to equation (10.8)
and (10.12) are:
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The formulas (10.15), (10.16) and (10.17) can now be evaluated immediately.
One obtains the results:

5 =2 V@'\/%ﬁ = 3.L64 \/%5 (10.20)
O O

1 \,Uo 1Y
Ty = —=— uU — = 0,289 U — 10.21
O > \[_3_ o) \ Vx 2 lo) vx ( )

2 i
oW = NE] b \/ upU 3x = 1,155 b\/uon3x (10.22)

A velocity distribution in the form of a cubic parabola according to
figure 43b 18 selected as second numerical example in the following manner:

Osqsl: f‘(q)=3-q—%q3
(10.23)

1
[

nZ1: f£(n)

This satisfles the conditions:

that is, the boundary layer proflle Joins the velocity of the potential
flow with a continuous tangent. The calculation of the numerical factors
azccording to equations (10.8) and (10.12) gives:

@ = 5%%; B = % (10.2k4)

and hence for the characteristic paramsters of the boundary layer:

& = 4,64\ [¥X (10.25a)
o]
Uo
To = 0.323 WU\ -2 (10.25b)
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W = 1.29 b\/upUOBZ (10.25¢)

The exact value for the drag is, according to equation (9.18)

3

oW = 1.328 b\}Uo3ppl. The simple assumption of a linear velocity distri-—

bution therefore gives a drag toc small by thirteen percent, the cubic
velocity distribution a drag too small by three percent.

The calculation of the displacement thicknesses of the boundary
layers according to equation (10.10a) results, for the linear velocity

distribution, in &% = % b, and for the cubic velocity distribution
in &% = 3 5. This gives, because of equations (10.15) and (10.25a):

&% = 1,732 \lYle (1inear velocity distribution)
o
V5 (10.26)
5% = 1.T40 T (cubic velocity distribution)
o
/
The agreement with the exact value B&* = 1,728 %5 according to
‘0

equation (9.21) 1s surprieingly good; this is, however, more or less
accidental,.

The essential characteristics of the boundary layer according to
the approximate calculation described above are once more compliled with
the exact solution In the table below.

Characteristics of the Boundary Layer on the Flat Plate;

Comparison of Approximate Calculation and Exact Solution

o,

U U T U.2\1/2
Kind of calculation {o*|/=2 [slf=2 | &% ——Q\f%ﬁ cw<~9_> /
o

vx vx 3 qu v
Linear approximation| 1.732 |0.578 |3.00 0.289 1.155
(fig. L3a)
Cubic approximation | 1.T74O [0.645 |2.70 0.323 1.29
(fig. 43Db)
Exact solution 1.729 |0.664 (2,61 0.332 1.328

(Blasius)
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As one can see from this table, the agreem=ont, particularly of the cubic
approximation and the exast solution, is rather good. On the whole, the
results of this calculation with the aid of the momentum theorem may be

regarded as very satisfactory, especially In view of th- simplicity, as

compared to the exact calculation.

Seventh Lecture (January 19, 19u42)

b. The Momentum Theorem for the Boundary Layer
with Pressure Drop (Plane Problem)

Last time the boundary layer on the flat plate In longitudinal flow
wag calculated by means of the momentum theorem. Today the general case
of the boundary layer wlth a pressure difference iIn the flow direction
will be treated. One considers the flow along a curved surface, and
measures the coordinate x &8s arc length along the surface; let y be
the perpendicular distance from the surface, U(x) the given potential
flow (fig. 44). The fundamental equation may be obtained by a momentum
consideration as in chapter IXc; now, however, the pressure difference
has to be taken into conslderation. The same result 1s obtained by
integration of the equation of motion of the boundary layer with respect
to y from y =0 (surface) to y = h, the layer y = h lying
everywhere outside of the friction layer (fig. 44).

The differential equations of the boundary layer for the steady
case read, according to equation (8.3),

~
2
u@+v§.&=_la_p+ V.a__li
ox ay pa)( aye
du, ¥ _ g % (10.27)
ox 9dy

with the boundary conditions: y =0: u=v=0; y=e: u-=7U. The
intsgration from y =0 to h gilves:

h h

h
2 Mg, - _pidp, v
u< dy + v Sy dy h S + [ay]o (10.28)

N |+

4
dx
y=o0 o

In the first term the differentiation with respect to x and the integra-
tion with respect to y may be interchanged, since the upper limit h

{s independent of x. On the left side the second term is transformed by
integration by parte:
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udy =U vy - = u dy

*
<
e
&
]
-
]
| C—
o
|
=gk g

O o} O

Yy representing the transverse velocity outaside of the boundary layer.

By continulty, él = - g% and
oy
h
-] u
Yh = > dy (10.29)
o
and hence:
h h h
du du du
v — = =T — + —_—
oy a ox & ox
- N o
Insertion in equation (10.28) gives, because of:
h T
v [ﬁB] = -2 (10.30)
3 [o s
the relation:
h h
a 2 du h 4 Ts
— u dy -~ U 4 =328 _ 0 10.31
o y % o dx " o (10.31)
o o

This is the so—called Karman integral—condltion, first given by v.<Kerman
(reference 23).

For the pressure term one now introduces the potential velocity U(x);
- furthermore, equation (10.31) is to be transformed so that the dlsplacem~n?
thicknees 5* and the momentum thickness 3 appear in it as defined by
equation (6.31) and (6.32), namely:
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h
U d* = (U — u)dy (10.52)
Q
h
2
U<y = u (U = u) dy (10.33)
o)
According to Bernoulli's equation:
1 dp U au? au
L L - — = 4 U=
P dx dx dx dx
which can also be written:
h h
h dp d d .
- === - = d — 10.
o I u° y+U ix U dy ( 34)
o o

h
-
Lot o)y - (v-w gy
o) dx ¢
o o)
)
h [ on | h
| |
d d J d
= = U—1u) udy + —<U U-—u)dy, — U — U-u)d
o ( ) Yo ( ) dy = ( ) dy
O ' G

and after differentiation of the second term:
h h

T
2.4 (U —u) udy + oY (U —u) dy (1.
P dx Ax

(119
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The displacement thickness and the momentum thickness can now be introduced
directly and one obtains:

.
2 -3 (?y) + Wexy
P dx dx
or
T—°-—U2d—°+(2a+6*)U99 (10.36)
5 -V & T -3

This is the form of the momentum equation for the boundary layer with
pressure drop that will be used as a basis for further considerations.
Since in it T, 18 quite generally the surface sinearing stress,

equation (10.3%) must apply in the same way to turbulent flow, too. We
shall come back to that later. For the special case of vanishing pressure

drop %E = 0, equation (10.36) is transformed into equation (10.4) found

before for the flat plate in longlitudinal flow.

The further calculation of the boundary layer on the basis of
equation (10.36) is performed for the laminar case according to the method
of Pohlhausen (reference 24) and for the turbulent case according to the
method of Gruschwitz (reference 34) (chapter XVIII).

c. Calculation of the Boundary Layer According to the

Method of Karman—-Pohlhausen—Holsteln

For further calculation it 1s of importance to find a suitable
expression for the velocity distribution in the boundary layer u(x, y).
According to our understanding of the exact solutions of the differential
equations of the boundary layer this expression must at least satisfy
the conditions that for y =0: u=0, and for y =®: u = U, Further—
more the derivative au/ay must vanieh for large y. Moreover, velocity
profiles with and without inflection points must be possible, as they
occur in the pressure decrease and pressure increase region, respectively.

/< \
Finally, a profile with \%5) = 0 must be possible in order to have a
y
y=0

separation point result from the approximate calculation.

One chooses for the velocity distribution an expression of the form
u (x, y) = Uf(y/SP), and sets, according to Pohlhausen,
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for f(y/6p) a polynomial of the fourth order, hence:

=an+bn+cpd+a qh; n = —— (10.37)

cic

valid for 0< y<— 5 0< n<— 1. SP(x) stands for the boundary layer

X
thickness, the dependence of which on x has ye: to be calculated. The

boundary layer thickness of the approximate calculation GP ig here

provided with the index P ( = Pohlhausen) in order to avold confusion
with the boundary layer thickness & used before. Whereas for the
exact solutions the velocity in the boundary layer asymptotically
approaches the velocity of the potential flow, (u DU for y 5w );
ths value u =U 1is to be attained in the approximation at a finite
distance from the surface y = 8p, for reasons of calculation. This

modification of the actual relation is physically insignificant.

For the determination of the free constants a, b, ¢, d 1in
equation (10.37) the following boundary conditions are prescribed, all
of which follow from the differential equation of the boundary layer
(equation (8.3)):

\
du 3%
= : = U; —:O; - =0
y =0%: wu oy ay2
. > (10. 38)
y:O u:O; v a—&:—U@.
ay2 dx
J

Since the condition of no s8lilp u=0 for y =0 1s automatically
satisfied by expression (10.37), the four free constants a, b, c, d
are sufficient to satlsfy the remaining four conditions. Thes last

of the five conditions follows immedlately from the exact differential
equation of the boundary layer i1f one puts y = O and takes the
boundary conditione into consideration. This condition 1s particularly
important since 1t determines the curvature of the veloclty profiles
near the surface and assures that boundary layer profiles do not acquire
an inflection point in the reglon of pressure decrease and do acquire
one in the reglion of pressure increase, as required by the cxazt solution
according to chapter VITI. From equation (10.38) follows for the
coefficients a, b, ¢, 4 the equation system:
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a+ b+ c+ d =1

a+2b+ 3¢+ 4Ld=0
2b + 6¢c + 12d = O g (10.39)
&%:—UU'
5p J
From the last equation follows immediately:
1 8%
b==2 Py 10.40
5 5 ( )
if one introduces the simplification:
5l
P_dU
A= = = 10.41
E & (10.41)

The dimensionless quantity M\ plays the role of a form parameter of the
velocity profiles as will become clear presently. For the remaining
coefficients one obtains from equation (10.39):

a=2+

(0)Y Pd

; c==24+3% a=1- % (10.40b)

n

Hence the expression for the velocity distribution, which satisfies all
boundary conditions according to equation (10.37), reads:

% = (2 — 203 + nh) + % (n - 3n° + 3n3 - nh)
(10.42)
% = F(n) + » G(q)
in which
F(n) = 2q = 293 + n*
(10.43)
G(n) = % (n = 3n° + 393 - nk)
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Due to n = y/8p(x) the boundary layer thickness 8p(x) 1s here the

only unknown. If that is calculated, the parameter A féllows immediately
from equation (10.41). From equation (10.42) one understands that the
veloclity profiles form with the form parameter A(x) a one-parameter
family. The functions F(n) and G(n) indicated in figure 45 and

table 4 have a universal character, that is, they do not depend on the
special body shape. The velocity profiles for various values of )\ are
plotted in figure 46. The profile with A\ = O 1s obtained for dU/dx = 0,
that is, for the boundary layer without pressure gradient (flat plate in
longitidinal flow). The separation profile with (Bu/axk = 0, that is,

a = 0, has according to equation (10.4LOb) the parameter A = =12. The
profile at the stagnation point has, as will be shown below, A = T7.052,
For ) > 12 there result values of u/U > 1 1in the boundary layer, vhich
physically does not make sense. These values therefore have to be excluded.
Since behind the separation point the boundary layer calculation loses ite
validity anyway, the form parameter )\ 18 limited to the region

—125), 5412 (10.44)

The unknown boundary layer thickness SP(x) remains to be

calculated. For this the momentum equation (10.36), so far not utilized, is
at our disposal. Before performing this computation, a few preparatory
calculations are required, namely the determination of the boundary layer
characteristics, displacement thickness 5%, momentum loss thickness 93,

and surface shearing stress T, on the basls of the approximation-

expression equation (10.42): One obtains from equations (10.32) and
(10.42):

1
% = [l ~ F(n) - kG(n)] dn
T|=O
1
52; -1 [Fn) Ao(m) | [1 - 7(n) - m(n)] dn
n=o

The calculation of the definite integrals, with the values of F(n) and
G(n) according to-equation (10.43), gives:

o .3 2 (10.45)
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_ 2
4 _ 3T A _
5p 315 945 9072 (10.46)

:(au 1

Further, there results for the surface shearing stress from T, = u\g—)
Y /o

according to equations (10.42) and (10.43)

T B

o P _ 12 + A
"

=

U 3

(10.47)

Now the momentum equation (10.36) is to be used for calculation of
5p(x). After multiplication by 3/VU it acquires the dimensionless form:

e 7
LU <2 . 5*) Uy _ o3 (10.48)

The boundary layer thickness bp does not even appear in this equation;
however, this is not particularly astonishing, since SP ies a rather

arbitrary quantity of our approximate calculation and therefore without
special physical significance. The physically important quantities,
displacement thickness ©* and momentum loss thickness 3, appear
instead in equation (10.48). Hence it suggests itself to first ,
calculate § from the momentum equation (10.48) and then to pass on

to 5? by means of equation (10.46). For this purpose one introduces

according to Holstein and Bohlen (reference 25) aside from the first form
parameter )\ according to equation (10.41) a second form parameter k,
formed analogously with the momentum thicknees 3:

2
k= i U (10.49)
v
Then one sets:
2
7 = -3_ (10.50)

Then

K= 2 U (10.51)
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Between the second form parameter xk and the first form parameter A
exists, according to equations (10.40) and (10.41) the universal relation:

2
S (1 G S >2x 10.52
i <315 945 ~ 9072 (10.52)

Furthermore, for simplification, one substitutes:

S A
.20 1B o) (10..53)
37T _ A _ M
315 945 9072
-T—°i=7—°8—1’i’—=<12+" q_ X _ ’“2)=f(n) (10.54)
wU u U B 6 /\315 945 9072 2

By introduction of k and Z according to equations (10.49) and (10.50)
and by substituting from equation (10.53) and (10.54) one now obtaine

from the momentum equation (10.48), because of §3°'/v = % %%
1.4z =
5 U ix + [2 + fl(n{]n - fe(n) =0 (10.55)
Finally, one sets as further simplification
2fa(k) - bk - 2f, (r) & = F(x) (10.56)

or written in detail:

7 A _ 8 116 2 1)2 2 .3
F(R) = 2<§%§ - §K§ - §67§>'{% - §T€ A+ <§H§ + 150 A+ §67§ A (10057)

and thus obtains the following differential equation for the momentum

thickness
lg P(x) ";;';?UT] (10.58)
@x U




NACA TM No. 1217

This is a non—linear differential equation of the first order

for z = ae/v. The fact that the function F(k) 1s rather complicated
does not constitute any appreciable drawback, since F(k) 1is universal,
that is, independent of the shape of the body, and hence may be tabulated
once and for all. The functions F(k), fl(n), fo(k) as also & = k(M)
according to equation (10.52) are given in table 5.

As to the solution of equation (10.58) the following remains to be
said: The calculation has to start at the stagnation point x = O. There
U = 0; and the initial slope %% would be infinite if F(k) were not

also equal to zero at the stagnation point. The function F(k) actually
has a zero which ylelds a physically significant initial value. Thia
zero of F(k) 1s given when the second bracket in equation (10.57)
disappears. One finds:

F(x) = 0 for k = K_ = 0.0770; & =i = 7.052 (10.59)

The value X\ = T7.052 therefore gives the value of the first form
parameter at the stagnation point., Then the initial slope of the integral
curve at the stagnation point now has the indeterminate value 8. The

latter may, however, be calculated and hence finally yields the initial
value and the initial slope of the integral curve as:

K 3
Zy = 2 = 0.0770
U3 U3
- ? (10.60)
dZ - 0
s = —0.0 <_
(dx)o -0.0652 e
° /

The Index o denotes the values at the stagnation point. With these
initlal values one succeeds easlly in performing the integration of
equation (10.58), for instance, according to the isocline method. A
calculation example is given in the appendix, figure 47, and table 6.
The calculation is to be carried up to the separation point A = =12:

B = — 0.1567. Quantitles entering the calculation that are given by the
potential flow are the velocity U(x) and its first derivative with
respect to ths arc length dU/dx.* (Only at the stagnation point le
d2U/dx2 also required for the initial slope of the integration curve.)

* In Pohlhaudgen's treatment (reference 24) a differential _equation is
obtained instead of equation (10.58), for the quantity z = 8p>/v, formei
analogously to Z. Pohlhausen's differential equation also contalns
d2U/dx2 which often can be obtainsd from the given potential flow only

by a double graphical differentiation. _The representatlion of Holstein
which completely avoids the quantity d°U/dx2 therefore meana an

essential improvement of the method,
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The values of the form parameters for the three special cases:
stagnation point, velocity maximum (U' = O) (pressure gradient equals
zero), and separation point are compiled in the table below.

case | x|
Stagnation point T.052 0.0770
Velocity maximum 0 0
Separation point -12 -0.1567

The entire process of calculation takes the following course:

1. The integration of equation (10.58) yields 2Z(x), k(x) and
according to equation (10.50), also 4(x); furthermore it ylelds the
position af the separation point.

2. First form parameter \(x) from equation (10.52)

3. Displacement thickness &%* from equation (10.53)

L. Surface shearing stress T, from equation (10.5k)

5. Boundary layer thickness SP(x) from equation (10.45)

6. Velocity distribution u/U from equation (10.42)

Flat Plate in Longitudinal flow

The special case of the flat plate in longitudinal flow which was
treated in chapter Xa with a different form for the approximation can
also be obtained very simply from the present calculation., U = U ;
U'=s O, and hence x = A = 0, and according to equation (10.58):

Yo

B IR

_ F(0) _ 0.4698
UO

With the initial value 9 =0 for x = O there results

8% = 0.4698 & or 3 = 0.685 vz (10.61)

o o]
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whereas the exact value according to Blasius' calculation, equation (9.21b),

is 9§ = 0.664\[Vx/U,. Furthermore, 1t follows that the displacement
thickness is with d*/y = £,(0) = 2.54

&% = 1.75\"[’71‘- (10.62)
(@)

The shearing stress becomes, from equation (10.54) with f2(0) = 0.235;

U

To = 0.343 uU, \i (10.63)

while the exact value 7T, 18 74 = 0.332 uUb\fﬁb/Vx according to

equation (9.17). The agreement with the exact values is rather satisgfactory.
In figure 50b the velocity distribution obtained by the approximate calcula-—
tion also 18 compared with the exact calculation in the plot u/U against
y/56*. This agreement also is rather good.

Stagnation Polnt Profile

A similar comparison can be performed for the stagnation point
profile the exact solution of which was given in chapter VI. For this
case A = Ay = 7.052, Kk = kg = 0.0770., For the approximate calculation
the momentum thickness 1is:

\[% =\, = 0.278 (10.64)

whereas according to the exact calculation equation (6.34) it is
a\JU' /v =0.292. The displacement thickness is, for the approximate
calculation;

5*\’3—-’- = 1) (k) \[ko = 0.641 (10.65)

whereas according to the exact calculation, equation (6.33), it is

H* VU'/V = 0.648. TFinally, according to the approximate calculation the
shearing stress 1is:
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To v fokg 0.332 _ 11

— —_— = = R 9 (10.66)
. *

wuo -\ U ‘!Ko 0.278

T Q v " N
compared with = Vgv = o"(0) = 1.234 by the exact calculation. Thus
m

the agreement with the exact values is here also satisfactory.

The velocity distribution of the approximate calculation is compared
with the exact calculation in figure 50-a in the plot u/U against y/5%.
Here also the agreement is good.

The following table contains a compilation of the comparisons Just
given, between the characteristics &%, 3§, T, from exact and from
approximate calculation.

e e

Blasius Profile Stagnation point profile

_ x
5*\/17_01,\?_0# % 8% g";\’%'_ _To %.
< — 57—_

* K VU03/VX o /U'

1.75 [0.685 0.343 2.55I 0.64110.278| 1.19 |2.31

Pohlhausen
Approximation

Exact solutlon| 1.73 [0.66k| 0.332 |2.61] 0.648[0.292| 1.234[2.21

Of course, it can not yet be concluded from this good agreement of
the approximate with the exact solution that similar good agreemsnt would
exist for all the boundary layer profiles along the body. Accurate
comparisons are not easily performed eince very few exact solutions
reaching from the stagnation point to the separation point exist. However,
one may conclude from occasionally made comparisons that in the region of
pressure decrease the agreement is mostly rather good; in the region of
pressure increase, particularly near the separation point, some deviation
might occur.

Since no other serviceable methods for boundary layer calculation
have so far become known, the Pohlhausen method is for the present to be
regarded as the best. The time required for a boundary layer calculation
for one side of the body immersed in a given potential flow amounts to
about three hours.

The calculation described here for the plane flow was applied by
Tomotika (reference 26) to the rotationally—symmetrical case.
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d. Examples

A few examples of boundary layer calculations will be given, all
of which were performed according to the approximation method described
in the previous section.

The first example, taken from a treatise of H. Schlichting and
A, Ulrich {rsference 35) concerns a series of elliptical cylinders in a
flow parallel to the major axis. The axis ratios are a;/b; =1

(circular cylinder), 2, 4, 8, « (flat plate). The velocity distributions
of the potentlal flow are given in figure 51. For slender cylinders they
are characterized by the fact that the velocity has a very flat maximum
and decreases steeply tcward the front and rear. The result of the
boundary layer calculation is illustrated In figure 52. Figure 52-a

shows the dimensionless displacement thickness as a function of the arc
length. It is ncteworthy that for all elliptic cylinders the boundary
layer on the front half is smaller than for the flat plate; this is

caused by the pressure decrease. The laminar—separation point for the
circular cylinder lies at s/t = 0.60k (¢ = 109.5°). With increasing
finensss ratio it shifts further toward the rear; 1t 1s also plotted in
figure 51. Flgure 52— shows the variation of the form parameter A and
figure 52— the variation of the surface shearing stress. For every
elliptic cylinder the latter has a maximum,the position of which shifts
frontward with increasing fineness ratio. The variation of the shearing
stress for the cylinder of axls ratlo eight shows only an insignificant
difference from the one for the flat plate in longitudinal flow. Figure 53
gives a survey of the variation of the boundary layer on the body and the
velocity profiles at various points along the surface. Corresponding
calculations for the rotaticnally-symmetrical case (that is, for ellipsoids
of revolution with flow parallel to the axis) have been performed by
Pretsch (reference 27).

The second example (reference 35) gives the boundary layer on a
symnetrical Joukowskl profile of fifteen percent thickness for 1lift
coefficients in the region of c, = O to 1. Figure 54 gives the velocity

distribution according to the potentlal theory for the 1ift coefficients
cq = 0, 0.25, 0.50, 0.75,and 1.0. For the symmetrical approach flow

Cq = 0) the velocity maximum lies rather far toward the front at

s/t = 0.141. With growing 1ift coefficient the velocity maximum increases
on the suction side and decreases on the pressure gide. Simultaneously
the maxirmum shifts farther forward on ths suction side and farther rearward
on thc pressure side. The magnitude of the veloclty maximum and its
position are of primary importance for the development of the boundary
layer and in particular for the position of the separation point. The
resualts of the boundary layer calculation are plotted separately for the
suction and pressure sides in figure 55. Figure 5%—a glves the

variation of the displacement thickness, figure 55-b the form

parameter \.,and figure 55— the surface shearing stress. The posltion
of the laminar separation point ls plotted in flgure 54, Figure 56 glves
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a survey of the variation of the boundary layer along the surface and of
the velocity distribution in the boundary layer for Cq = 0, figure 57
for cg = 1. >

Finally, the third example gives a survey-of the influence of the
most important profile parameters of a wing profile on the laminar
boundary layer. K. Bussmann (reference 36) performed the boundary layer
calculation for a family of Joukowsky profiles of relative thickness
d/t = 0 to 0.25 and relative camber f/t = O to 0.08 for cg— values

from O to 1. Figure 58 shows the family of Joukowsky profiles. Of the
very voluminous results, only the position of the separation point shall
be shown hesre. Figure 59 shows the position of the separation point on
the suction side as a function of thickness, camber, and 1ift coefficient;
figure 60 shows the same result for the pressure side.

Herewlith the discussion of the approximation method for calculation
of the laminar boundeary layer will be concluded.

Eighth Lecture (January 26, 1942)

CHAPTER XI. PREVENTION OF SEPARATION

For practical flow problems the flow with pressure increase
(retarded flow) plays an important role. It is always desirable that
no geparation of the flow from the wall occur, because of the resulting
large lossss In energy. The wilng presents a good example. A pressure -
incre nse exlsts on the suctlon side toward the tralling edge (fig. 61).
If separation occurs, the wing will have an undesirably large drag and
small 1ift. Another example 1s the flow 1In an expanding passage
(diffuser) which transforms kinetic energy into pressure energy (as for
instance in the wind tunnel or in the bucket grid of a turbine).

Calculations will presently show that the ability of a laminar flow
to overcome a pressure increase without separation 1s sxcecdingly small.
Thus the pressuare increases pregent in practical flows would, for lamlnar
flow, almost always lead to separation. The reason that, nevertheless,
in many cases of practlical flows considerable pressure increases are
surmounted without separation 1s that the flow is turbulent. As we shall
gee more clearly later, the ability to overcome a pressure increase with—
out separation is very much greater for twrbulent than for laminar flow.
Since, moreover, the pressure increase always gives rise to an early
transition from laminar to turbulent*, one has to deal almost exclusively
with turbulent flow in practical flows with pressure increase.

Nevertheless 1t is ugeful to clarify the fundamental relations
regarding prevention of sgeparatlion for laminar flow, particularly because
1ts phenomena lerl themselves more readily to numerical treatment than
thoge of the turbulent flow, .

*Dotnils are given in chapter XXI "Traneition from Laminar to Turbulent!
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Various possibilities exist for prevention of separation., The
simplest way is to make the pressure increase sc small that separation
is avoided. A numerical estimation in thes next sectlon will give
information about this possibility. Another posslbility consists in
artificially influencing the boundary layer, for instance by blowing
or suctlion of fluid, or else by application of an auxiliary wing that
provides acceleration at the critical polnts of the boundary layer.
Some details will be given in the following sections of this chapter.

a. Estimation of the Admissible Pressure Gradient

We are going to make, following Prandtl (reference 2), a generally
valid estimation of the pressure increases in a laminar boundary layer
that are possible without the occurrence of separation. We take as the
basls the Karmén—Pohlhausen approximate calculation according to
Chapter X and make the assumption that under the effect of the pressure
gradient given by the potential flow the boundary layer has developed
till near the separation point (Point O 1in fig. 62). From here on
the pressure distribution is to be such that the form of the velocity
profile does not change further downstream, that is, the form parameter
A 1is to remain constant. Since the value corresponding to the separation
point. is A = =12, this constant A—value shall be chosen at A = —10%,
A definite value of the sscond form parameter (according to table 5)
corregsponds to this choice:

A = =10; Kk = -0.1369; F(k) = 1.523 (11.1)

For the prevention of separation the following relation between the
potential-flow velocity U(x) and the momentum thickness §(x) results
sccording to equations (10.50) and (10.51):

82 0.1369
o -2 T (11.2)
or
az u"
= = 0.1369 575 (11.3)
or
az _ "
u a; = 0.1369 [—ITé- = 0.1369 a (ll.h)

if one puts for simplification

*At any rate, this A-value must be n:zativ:, glnce otherwlia: Lhe flow
In question ig not retarded.
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0 = ) (11.5)

On the other hand, the momentum equation according to
equation (10.58) holds for the further development of the boundary layer
for x> 0:

U = F(k) = F(=0.1369) = 1.523 (11.6)

BI&

The numerical value must be substituted for F(k), if the form parameters
are to remain constant at the values given by equation (11.1). From
equations (11.6) and (11.4) follows therewith, for the constancy of the

form parameter A = —-10, the conditional equation
0.1369 U—U;- = 1.523
Ut
or
i
o = UU'_2 =11.13a 11 (11.7)
Ut

For o > 11 the boundary layer can stlll bear the pressure increase;

for o < 11 separation occurs; for o = 11 the boundary layer always
remains with A\ = =10, on the verge of separation. Qualitatively, the
following can be immediately said about the distribution of the potential—
flow velocity U(x) which gives no separation. Because of equation (11.7)
a necessary condition for avoiding separation in retarded flow is:

U">0 for U'< O (11.7a)

that is, a negative velocity gradient U' must exist, the magnitude of
which decreases in the flow direction. If, therefore, the curve U(x)
in figure 63 is curved downward behind the maximum (U™ < 0O), separation
occurs in every case; if it 1s curved upward (U" > 0), separation some—
times does not occur. The limiting case U" = 0 for U' < O always
leads to separation. The gufficient condjition for avolding separation
is UU" /U2 > 11,
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One now proceeds to calculate what potentlal flow and what boundary
layer thickness variation correspond to ¢ = +11. From equation (11.7)
follows:

and after integration: 1log U' = 11 log U - log Ci or

Ul
U - _o¢
Ull 1

with Ci as integration constant. Repeated Integration glves:

—10
1y

— =C'x+C 11.8
10 : 5 ( )
For x = 0, U(x) shall be U(x) = Uy, thus
1 10
Cp = ia'Uor (11.9)
Furthermore, one puts
c1 U = ¢ (11.10)
170 1 ’

’

and obtains from equation (11.8) for the potential flow

UO
U= (11.11)

)0.1
(1 + 10 Cx

Thereby is found the deslired velocity distribution that Just avoids
separation, The constant C; can be determined from the boundary layer
thickness %, at the initial point x = 0:

2
L=LL:/§—=—10

__‘Ul
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According to equation (11.11) .

Ut = Cl Uo

1.1
(1 +10 Clx)

_fiov 0.55
5 =\ !Con (1 + 10 C x)

From & = 60 for x =0 follows

and thence

c, = _uue (11.12)
UOSO

and thus, as the final solution for the potential flow and the boundary
layer thickness varlation,

-0.1*
U =1U,(1+ 100 XX (11.13)
Us.°
o-o *
0.55 .
5 = 50<1 + 100 —"-L> (11.14)
2
U060

The permissible retardation (velocity decrease) 1s therefore comparable

10
to l/\/:x and i1s thus very small. The velocity is thus very close to
the constant velocity of the flat plate in longitudinal flow. For the
present case the growth of the boundary layer thickness & must therefore

1/2

be somewhat larger than for the flat plate, where¢ &~ x ' . Here

5 ~ x0-55; thus the increase is only slightly larger.

The flow in a divergent channel with plane walls (two—dimensional
problem) will be treated as another example. In figure 64 let x be
the radial distance from the origin O. The walls start at x = a, where

the entrance velocity of the potential flow equals Uy,. The potentlal ”
flow 18
*Compare Chapter IX e where 1t was found, as exact solution of the
differential equation of the boundary layer, that in retarded flow .
.091
separation occurs when U(x) = u, x —0.09

1
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-
U(x) = U, %
U = - U, — 3 (11.15)
2
' a
U = 20, 3
)

Thus U'< O and U"> O for all x so that the neceseary condition
equation (11.7a) for avoiding separation is satisfied. However, calcula—
tion of the dimensionless number ¢ according to equation (11.5) gives

g=2 (11.16)

The sufficient condition for avoiding separation, ¢ > 11 according to
equation (11.7) is therefore violated. For the divergent channel with

plane walls separation therefore occurs for any included angle. This

example shows especially clearly the low ability of the laminar flow to
overcome a pressure increase without separation. According to a calcule-
tion of Pohlhausen (reference 24) the separation point lies at (x/a.)A = 1.213
and thus is independent of the included angle a.

b. Various Technical Arrangements for Avolding Separation

It 1s a favorable circumstance for technical applications that for
higher Reynolds numbers the boundary layer does not remain laminar but
becomes turbulent. The turbulence coneists of an irregular mixing motion.
By this mixing motion momentum is continuously transported into the layers
near the wall, and the particles retarded at the wall are carried out into
the free stream and thus re—accelerated.

Because of this mechanism the turbulent flow is able to withstand,
without separation, considerably higher pressure increases than the
laminar flow; thus the pressure increases existing in technical flows
are made possible.

A few technical possibilities for avoiding separation will be
discussed.

1. Blowing. TFor a wing profile the separation of the boundary
layer for large angles of attack (fig. 65) can be prevented by blowing
air in the flow direction from a slot directed toward the rear. The
velocity for the layer near the surface is thus increased by the energy
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supplied and the danger of separation 1s therefore eliminated. It is

true that in the practical execution not much 1s gained, because of the

large Jet energy required for any considerable improvement of the flow. .
In order to make the energy output small, the width of the Jet mist be

kept small. But then the Jet, soon after its exit, breaks up into

vortices.

2. Another possibility of avolding separation 1s the arrangement
of a slotted wing according to figure 66. The effect depends on the
boundary layer formed on the slot AB being carried away into the free
stream, before 1t separates, by the flow through the slot. A new
boundary layer develops at C which is, however, at first very thin
and reaches D without separation.

The same principle 1s used for the Townend ring and NACA cowling
(fig. 67).

3. Suction. A further possibility for ths prevention of separation
is suction. For the wing, for instance, the retarded bouniary-layer
material is sucked off into the interior of the wing through one or
gseveral slote (fig. 68). The point of suction lies slightly ahead of
or behind the separation point so that no reversal of the flow can occur.
A new boundary layer which at first 1s very thin develops behind the
suction point and permits the pressure to increase further. In this .
manner one can overcome considerably larger pressure increases and
attain highsr values of maximum 1ift for the wing. Many different suction
arrangemsnts for increasing maximum l1ift have been investigated by
0. Schrenk (reference 28). Values for c, max ©F 3 to 4 were obtained. -

¢. Theory of the Boundary Layer with Suction

Suction is a very effective means for influencing ths friction
layer on a body immersed in a flow and particularly for avoiding
separation. This was pointed out for ths first time in 1904 by L. Prandtl
in his fundamental work on the boundary layer.

Anothsr poseibility of application of suction, recognized only
recently, 18 to keep ths friction layer laminar. Here the boundary layer
is, by suction, kept so thin that transition to the turbulent state of
flow 1s avoided. The surface friction drag is thereby reduced. Experimental
investigations of this effect were carried out by Ackeret (reference 39).

The laminar friction layer with suction can also be subjected to a
numerical treatment which will be briefly discussed. The following
assumptions are made for ths calculation: .
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1. The suction is Introduced into the calculation through the

assumption that the normal veloclity at the wall vo(x) is
different from zero. The wall 1s therefore assumed to be
permeable. A continuous distribution of the suction velocity
vo(x) serves the purpose of numerical treatment best.

2. The suction quantities are so small that only the parts in the

immediate neighborhood of the wall are sucked from the
boundary layer. This leads to a very small ratioc of suction
velocity v,(x) to free stream velocity U,: v /U, = 0.001

to 0.01.

3. The no—slip condition at the wall u = 0 1is retained with

suctlion, likewlse the expression for the wall shearing stress

; <l8uf>
o=u —
oy o

The equations of motion for the boundary layer with suction therefore

read
2% ]
u %& + Vv SE =T EH + v-éJE
y dx By2
E (11.17)
§E+.a_‘£=o
ox oy
J
with the boundary conditions
y=0 u=0 v =vy(x)
(11.18)

Vo <0

signifies suction; v, > 0 blowing.

As 1n chapter X b the momentum theorem i1s again applied to the

boundary layer with suction. The momentum equation for the boundary layer
with suction is obtained in exactly the same manner as In chapter X d
(compare fig. 4L4) provided one takes Into consideratlon, in additlon,

that the normal velocity at the wall ls different from zero. In chapter
X b the momentum equation was derived by integration of the equation of
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motion for the x—direction over y between the limits y = 0 and

y = » (compare equation (10.28). One imagines exactly the same calcula—
tion performed for the boundary layer with suction: then the expression
for the normal velocity at the distance from the wall y = h 1is
different, compared with the calculation in chapter X b. The normal
veloclty now becomes

V. =V -— = ’ (11.19)

The remaining calculation 1s exactly the same as in chapter X b and
finally ylelds as the momentum equation for the boundary layer with
suction.

T
o _ P4 U (11.20)
P ax

+ (29 + %) U %g<- Vo

The newly added term —v, U (compared with equation (10.36)) gives the
losa of momentum due to %he suction at the wall.

We shall now treat the special case of the flat plate with suction
in longitudinal flow (fig. 69) (reference 29). The free—stream velocity
is U,. Equation (11.20) then becomes

2 T
dd o du
U. = —=vU=z—==vy|&2 11.21
(o] dx (o) P <ay>y—o ( )

if one takes the law for the laminar wall shearing stress into consider-
ation, Furthermore, the assumption is made that the suction velocity
(or blowing velocity) -v, along the plate is constant. In this case
one can obtain from the momentum equation (11.21), by the following
simple calculation, an estimate of the variation of the momentum thick-
ness along the plate. One putas

(%y‘i)o - B %2 (11.22)

B 20 signifying a dimenslionless form paramster of the veloclty profile,
It may be assumed, to a first approximation, that B varies only little
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with the length of run x; accordingly, B will be considered congtant.
Thsn equation (11.21) may be written

2
(11.23)

oI
ﬁ|&
It
e
a:|<
+
OC‘.|O4
[+

with the initial condition 3
obtaing dd/dx = 0 for

0 for x = 0. For suction (v, < 0) one

=B :%— (suction) (11.24)
o]

(that is, therefore, the momentum thickness reaches, after a certain
approach length, a constant asymptotic value given by equation (11.24)).
Simultaneously, displacement thickness, velocity distribution, and all
other boundary layer coefficients also become asymptotically independent
of x.

For blowing (v, > 0) the value d¥/dx 1is, according to equation

(11.23), larger than zero along the entire plate; that is, 9(x) increases
with the length of run x without 1imit so that for large values of x,
one can neglect in equation (11.23) the first term on the right side as
compared with the second. Qne obtains therefore, as asymptotic law,

v
3, = I—I‘l x (blowing) (11.25)
o

On the whole, one obtains the remarkable result that for the flat plate
in longitudinal flow with constant suction or blowing velocity, the
boundary layer thickness for suction becomss constant after a certain
approach length, whereas for blowing, it increases proportionally to the
length of run x. In between lles the case of the impermeable wall
where the boundary layer thickness increases with Vil

For the case of the laminar boundary layer with the asymptotically
constant boundary layer thickness it is also possible to give immediately
an exact solution of the differential equations of the boundary layer 1in
a surprisingly simple form. In this case Ou/dx = O, hence also,
according to equation (11.17), dv/dy = 0 and therefore

v(x,y) = v, S constant (11.26)
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Hence there follows from equation (11.17)

2
du du
V eV e 11.2
0 : (11.27)
oy

and from it the solution which satisfies the boundary conditions
equation (11.18)

I 4
u(y) = U, 1l—e v (11.28)

From this equation results the displacement thickness of the asymptotic
boundary layer

, 3%, = — (11.29)
(o]
the momentum thickness
_1.V
IO (11.30)
B
and the form parameter —5‘3— = 2. By comparing equation (11.29) with
-]

equation (11.24) one finds the factor B = 1. The velocity distribution
of the asymptotic boundary layer profile according to equation (11.28)
is plotted in figure 70 together with the Blasius solution for the
impermeable wall.

Herewlith the coneiderations of boundary layer with suction will
be concluded.
CHAPTER XII. APPENDIX TO PART I
a. Examples of the Boundary Layer Calculation
According to the Pohlhausen-Holsteln Method
For the integration of the differential equation (10.58) it is

begt to use the isocline method. It 1g expedlent to calculate with
dimensionless quantities. The arc length s is made dimensionless by
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dividing by a characteristic lengih of the body immersed in the flow,
for instance, for the wing, by the wing chord t. The variable 2 ='32/V

U
18 made dimensionless by multiplying by —2. Thus one puts:
t

2 ™
U
Z% = — O _ (ﬁ)e %
vt t v
( (12.1)
_ 8
x* = T
y
Hence the differential equation reads:
*
dx* UO ds

The calculated example concerns a symmstrical wing profile (J 015) in
symmetrical approach flow (c, = O). The prescribed potential—flow
velocity and its flrst derivative with respect to the arc length is

given in table 6. The initial values for the integration are calculated,
according to equation (10.60), to be, for the present case:

N
*
]

0.00 1k9

since at the stagnation point d°U/ds® = 0. The auxiliary function F(«k)
required for the integration is given in figure 47-a and table 5. The
calculation according to the isocline method is shown in figure 48. Here
the curve Kk = —0.1567 which gives the separation point can be calculated
according to the relation:

t d t du
z* = —x [ = & - _0,1567) = W
Al U, ds oot U, ds

The intersection of the integral curve with this curve gives the separa-
tion point. As a result of the integration one obtaine at first the varia-—
tion of the momentum thickness. By means of the function 8&*/d = f(k)

T
and %'—2 = fe(n) given in table 5 one can also calculate the displacement
T
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thickness and the shearing stress. The result of the calculation is
compiled in table 6 and given in figure 49, Moreover, the velocity
distribution in the boundary layer can be geen from figure 56.

Translated by Mary L. Mahler
National Advisory Committee
for Aeronautics
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TABLE I. — THE FUNCTION @ OF THE PLANE STAGNATION POINT

FLOW (ACCORDING TO HIEMENZ (REFERENCE 10)); TO FIGURE 16

E-\2y; L -oer(e)

e et ————— e

9 ®! P

T2, 4

0 0 o] 1.23264
0.1 0.0060 0.1183 1.1328
0.2 0.0233 0.2266 1.0345
0.3 0.0510 0.3252 0.9386
0.k 0.0881 0.414Y 0.8463
0.5 0.1336 0.4946 0.7583
0.6 0.1867 0.5662 0.6751
0.7 0.2466 0.6298 0.5973
0.8 0.3124 0.6859 0.5251
0.9 0.3835 0.7350 0.4586
1.0 0.4592 0.7778 0.3980
1.1 0.5389 0.81%9 0.3431
1.2 0.6220 0.8467 0.2937
3 0.7081 0.8739 0.2498
L 0.7966 0.8968 0.2109
.5 0.8873 0.9161 0.1769
6 0.9798 0.9324 0.1473
T 1.0738 0.9457 0.1218
.8 1.1688 0.9569 0.0999
.9 1.2650 0.9659 0.0814
0 1.3619 0.9732 0.0658

1.4596 0.9792 0.0528
1.5577 0.9841 0.0420
1.6563 0.9876 0.0332
1.7552 0.9905 0.0260
1.8543 0.9928 0.0202
1.9537 0.9946 0.0156
2.0533 0.9960 0.0119
2.1529 0.9971 0.0091
2.2528 0.9979 0.0068
2.3525 0.9985 0.0051
2.4523 0.9988 0.0036
2.5522 0.9992 | 0.0027
2.6521 0.9994 0.0023
2,7521 0.9996 0.0019
2.8520 0.9997 0.001%4
2.9520 0.,9998 0.0010
3.0519 0.9999 0.0008
3.1518 0.9999 0.0004
3.2518 0.9999 0.0003
3.3518 1.0000 0.0002
3.4518 1,0000 0.0001
3.5518 1.0000 0.0001
3.6518 1,0000 0

. L]

L] L]
W HOWRNOU W HOWONON FWIn -
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TABLE II. — THE FUNCTION f OF THE BOUNDARY LAYER ON THE FLAT PLATE

IN LONGITUDINAL FLOW (ACCORDING TO BLASTUS (REFERENCE 8)); TO

N
FIGURE 30 n = y\f —2; 2 = f1(p)

o

vx' Uy
! |
n f ! f" l
- 4 - ——
0 ; 0 0 0. 3206
0.2 0.00664 0.066k41 0.33199
0.4 0.02656 0.13277 0.33147
0.6 0.05974 0.19894 0.33008
0.8 0.10611 0.26471 0.32729
1.0 0.16557 0.32979 0.32301
1.2 0.23793 0.39378 0.31659
1.4 0.32298 0.45627 0.30787
1.6 0.42032 0.51676 0.29917
1.8 0.52952 0.5T477 0.28293
2.0 0.65003 0.62977 0.26675
2.2 0.78120 0.68132 0.24835
2.4 0.92230 0.72899 0.22809
2.6 1.07252 0.77246 0.20646
2.8 1.23099 0.81152 0.18401
3.0 1.39682 0.84605 0.16136
3.2 1.56911 0.87609 0.13913
3.4 1.74696 0.90177 0.11788
3.6 1.92954 0.92333 0.09809
3.8 2.11605 0.94112 0.08013
4.0 2.30%76 0.95552 0.0642L
b.2 2.49806 0.96696 0.0°052
TN 2.69238 0.97=87 0.03897
4.6 2.88326 0.98269 0.02948
4.8 3.08534 0.98779 0.02187
=.0 3.28329 0.99155 0.01591 }
=2 3.48189 0.99425 0.01134
5.4 3.68094 0.99616 0.00793
5.6 3.88031 0.99748 0.00543
=.8 L, 07990 0.99838 0.00365
6.0 4.27964 0.99898 0.00240
6.2 L.L7948 0.99937 0.00155
6.4 4.67938 0.99961 0.00098
6.6 4.87931 0.99977 0.00061
€.8 5.07928 0.99987 0.00037
7.0 5.27926 0.99992 0.00022
7.2 5.47925 0.99996 0.00013
7.4 5.67924 0.99998 0.00007
7.6 5.87924 0.99999 0.00004
7.8 6.07923 1.00000 0.00002
8.0 6.27923 1.00000 0.00001
8.2 6.47923 1.00000 0.00001
8.4 6.67923 1.00000 0
8.6 6.87923 1.00000 0
8.8 7.07923 | 1.00000 | 0 |
l
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TABLE III. — THE FUNCTIONS f'3, 35 AND h5 OF THE BOUNDARY LA(ZR

ON THE CYLINDER (SYMMETRICAL CASE) ACCORDING TO HOWARTH

(REFERENCE 1) AND FROSSLING (REFERENCE 16). n =y o
v
f f' ”n [ ”
" 3 3 3 i 5 5 &s
0 o] 0 0.724k 0 0 o] 0.6348
0.1 0.0035 0.0675 0.6249 0.2 0.011k 0.1072 0.4402
0.2 0.0132 0.1251 0.5286 0.4 0.0405 0.1778 0.2717
0.3 0.0282 0.1734 0.4375 0.6 0.0806 0.2184 0.1408
0.4 0.0476 0.2129 0.3539 0.8 0.1264 0.2467 0.0483
0.5 0.0705 0.24hk 0.2780 1.0 0.1742 0.2399 -0.0106
0.6 0.0962 0.2688 0.2112 1.2 0.2218 0.2342 -0.0431
0.7 0.1240 0.2869 0.1530 1.k 0.2675 0.2239 —0.0567
0.8 0.1534 0.2997 0.1037 1.6 0.3112 0.2123 -0.0580
0.9 0.1838 0.3080 0.0626 1.8 0.3526 0.2012 -0.0522
1.0 0.2149 0.3125 0.0292 2.0 0.3918 0.1916 -0.0432
1.1 0.2462 0.3140 0.0028 2.2 0.4293 0.1839 -0.0335
1.2 0.2776 0.3132 -0.0173 2.4 0.4655 0.1781 -0.0245
1.3 0.3088 0.3107 -0.0320 2.6 0.5007 0.1740 -0.0171
1.4 0.3397 0.3070 -0.0420 2.8 0.5352 0.1712 -0.0114
1.5 0.3702 0.3025 —0.0482 3.0 0.5692 0.1694 -0.0072
1.6 0.4002 0.2947 —0.0513 3.2 0.6030 0.1682 ~0.0043
1.7 0.4297 0.2923 -0.0518 3.4 0.6365 0.1676 -0.0026
1.8 0.4587 0.2871 —0.0506 3.6 0.6700 0.1672 -0.0015
1.9 0.4871 0.2822 -0.0480 3.8 0.7034 0.1669 -0.0010
2.0 0.5151 0.2775 —0.04k4 4.0 0.7368 0.1668 —0.0004
2.1 0.5426 0.2733 —0.0402 k.2 0.7701 0.1667 —0.0001
2.2 0.5698 0.2695 -0.0358 L4 0.8035 0.1667 —0.0001
2.3 0.5966 0.2662 -0.0314
2.4 0.6230 0.2632 -0.0271 n h ht n"
2.5 0.6432 0.2607 -0.0230 > > 5
2.6 0.6752 0.2586 ~0.0194 0 0 0 0.1192
2.7 0.7010 0.2568 -0.0160 0.2 0.0017 0.0141 0.0249
2.8 0.7266 0.2554 —0.0131 0.4 0.0045 0.0117 —0.0436
2.9 0.7520 0.2542 ~0.0106 0.6 0.0057 -0.0010 ~0.0783
3.0 0.7TTTh 0.2533 -0.0085 0.8 0.0039 -0.0174 —0.0833
3.1 0.8027 0.2525 —0.0067 1.0 -0.0012 -0.0330 -0.0680
3.2 0.8279 0.2519 -0.0052 1.2 -0.0090 -0,0441 -0.0423
3.3 0.8531 0.2515 —0.00k1 1.h4 —0.0185 -0.0498 -0.0149
3.k 0.8782 0.2511 -0.0032 1.6 ~0.0286 -0,0503 +0,0088
3.5 0.9033 0.2508 -0.0024 1.8 -0.038% —0.0468 0.0256
3.6 0.9284 0.2506 -0.0019 2.0 —0.0472 -0.0406 0.0351
3.7 0.9534 0.2504 -0.001k 2.2 -0.0546 —0.0331 0.0380
3.8 0.9785 0.2503 -0.0011 2.4 —0.0604 -0.0257 0.0361
3.9 1.0035 0.2502 —0.0008 2.6 -0.0649 -~0.0189 0.0312
4.0 1.0285 0.2502 —-0.0006 2.8 —0.0681 -0.0133 0.0249
k. 1.0535 0.2501 ~0.0004 3.0 —0.0703 ~0.0089 0.0187
k.2 1.0785 0.2501 ~0.0003 3.2 -0.0717 -0.0058 0.0132
4.3 1.1035 0.2500 -0.0002 3.4 —0.0726 —0.0036 0.0039
bl 1.1285 0.2500 -0.0001 3.6 -0.0732 -0.0021 0.0057
3.8 -0.0735 -0,0012 0.0036
4.0 -0.0737 —0.0006 0.0022
L.2 -0.0738 -0.0003 0.0012
L.h -0.0738 -0.0001 0.0007
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TABLE IV. — THE FUNCTIONS F(y/8p) and G(y/sp) FOR THE VELOCITY
DISTRIBUTION IN THE BOUNDARY LAYER ACCORDING TO POHLHEAUSEN

(REFERENCE 24) AND HOWARTH (REFERENCE 15)

5% F G

0 0 0

0.1 0.1981 0.01215
0.2 0.3856 0.01725
0.3 0.5541 0.01715
0.4 0.6976 0.01k4d

0.5 0.8125 0.0104

0.6 0.8976 0.0064

0.7 0.9541 0.00315
0.8 0.9856 0.00105
0.9 0.9981 0.00015
1.0 1 0
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TABLE V. — AUXILTARY FUNCTTONS FOR THE BOUNDARY LAYER CALCULATION

ACCORDING TO HOLSTEIN (REFERENCE 2°)

[ _ B 37,
Y K F(k) fl(") i fe(" UL
15 0.0885 -0.0657 2.279 0.345
14 0.0920 -0.0814 2,262 0.351
13 0.0941 —0.0913 2.253 0.354
12 0.0948 ~0.,0946 2.250 0.356
11 0.0941 -0.0911 2.253 0.35k
10 0.0320 ~0.0806 2.260 0.151
9 0.0382 -0,0608 2.273 0. 346
8 0.0831 -0.0332 2.289 0.340
7.8 0.0820 -0.0271 2,203 0.338
7.6 0.0807 -0.0203 2.297 0.337
T.4 0.0794 -0.0132 2.301 0.335
7.2 0.0780 ~0.0051 2.305 0.333
S —— - ﬁ, _—
7.052 0.0770 0 2.308 0.332
T 0.0767 0.0021 2.309 0.331
6.9 0.0760 0.0061 2.312 0.330
6.8 0.0752 0.0102 2.314 0.330
6.7 0.0744 0.0144 2.316 0.329
6.6 0.0737 0.0186 2.318 0.328
6.5 0.0729 0.0230 2.321 0.327
6.4 0.0721 0.0274 2.323 0.326
6.3 0.0713 0.0319 2.326 0.325%
6.2 0.0706 0.0365 2.328 0.324
6.1 0.0697 C.0412 2,331 0.322
6 0.0689 0 0459 2.333 0.321
5 0.0599 0.0978 2.361 0.310
L 0.0497 0.1579 2.392 0.297
3 0.0385 0.2255 2.427 0.283
2 0.0264 0.3000 2.466 0.268
! 1 0.0135 0.3820 2.508 0.252
(o] 0 0.4698 2.554 0.235
-1 —0.0140 0.5633 2.604 0.217
-2 ~0.0284 0.6616 2.658 0.199
=3 —0.0429 0.7640 2.716 0.179
-4 —0.0575 0.8698 2.719 0.160
-5 —0.0720 0.9780 2.847 0.140
-6 -0.0862 1.0853 2.921 0.119
~7 -0.0999 1.1981 2.999 0.100
-8 -0.1130 1.3078 3.084 0.079
-9 -0.1255 1.4173 3.177 0.059
-10 -0.1369 1.5231 3.276 0.039
~11 ~0,147h 1.6251 3.383 0.019
—
-12 ~0.1567 1.7237 3.500 o]
~13 -0.1648 1.8159 3.627 -0.019
~14 -0.1715 1.9020 3.765 -0.037
~15 -0.1767 1.9821 3.920 ~0.054
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Figure 1.- Simple shear flow.
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Figure 2.- Hagen-Poiseuille’s pipe flow.
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Figure 3.- The general stress tensor.
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Figure 4.- The shearing stress (to fig. 3).
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Figure 5.- The deformation of a pure elongation.

— e \C

V-39,

Figure 6.- Pure angular deformation (e > 0).
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Figure 8.~

Types of Solutions of the Navjep

-Stokes differential €quations,



NACA T™™ No. 1217 129

Figure 10.- Reynolds’ law of similarity.

Figure 11.- Laminar pipe flow.
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vt
Figure 12.- Velocity profiles of the starting pipe flow ( T = —2—>
r
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Figure 13.- Velocity distribution on an oscillating surface.
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Figure 14.- Velocity distribution on a surface set suddenly in motion.
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Figure 10.-
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The plane stagnation point flow.
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Figure 16.- The velocity profile of the plane stagnation point flow.

-+—\ Convergent
- f].OW

Divergent
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Figure 17.- The convergent and divergent channel.

Figure 18.- Velocity distribution in the convergent channel.
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Reverse flow

Figure 19.- Velocity distribution in the divergent channel.

Figure 21.- Viscous flow around a sphere.
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Figure 22.- Streamline pattern of the viscous flow around a sphere
(according to Stokes).

....uuHm""""m""m m""mffmummn......._

Figure 23.- Streamline pattern of the viscous flow around a sphere
(according to Oseen).

Figure 24.- Concerning Prandtl’s boundary-layer equation. (Boundary-
layer thickness ® magnified.)
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Figure 25.- Separation of the boundary layer. (A = point
of separation.)
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u ay dy2
Figure 26.- Velocity distribution in the boundary layer for pressure
®<0)
decrease <dx < 0 ).

y y

Figure 27.- Velocity distribution in the boundary layer for pressure

- @ . o)
increase e 0 ).

Figure 28.- Concerning the calculation of the friction drag.
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Figure 29.- The boundary layer on the flat vlate in longitudinal flow.
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Figure 30.- Velocity distribution u(x,y) in the boundary layer on the
flat plate (according to Blasius).
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Figure 31.- The transverse velocity v(x,y) in the boundary layer on
the flat plate.

- X

Figure 32.- The boundary layer on a cylindrical body of arbitrary
cross section (symmetrical case).
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Figure 33.- The function fg’ of the velocity distribution in the
boundary layer.
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Figure 34.- The functions gg’ and hg' of the velocity distribution

in the boundary layer.
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Circular cylinder
TSN
Ux ~

’ /
/” Slender obody
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Figure 35.- Velocity distribution of the potential
flow for a wing profile.

Figure 36.- Concerning the calculation of the friction layer on the
circular cylinder.

s

Figure 37.- Wake flow behind the flat plate in longitudinal flow.
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Figure 38.- Concerning application of the momentum theorem for the
flat plate in longitudinal flow.
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Figure 39.- Asymptotic velocity distribution in the wake behind the
flat plate in longitudinal flow.
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Figure 40.- Streamline pattern and velocity distribution of the plane jet.
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Figure 41.~ The velocity profile of the plane jet.
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Figure 42.- Application of the momentum theorem for the flat plate in
longitudinal flow.

Figure 43.- Velocity distribution in the boundary layer on the flat plate
in longitudinal flow.

(a) Linear approximation.

(b) Cubic approximation for the velocity profile.

Figure 44.- Application of the momentum theorem to the boundary layer
with pressure gradient.
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Figure 45.- The universal functions F(y/sp) and ’J(y/sp) for the
velocity distribution in the boundary layer according to Pohlhausen.
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Firrure 46.- The one-parameter family of velocity profiles according
to Pohlhausen.
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Figure 47(a).- Auxiliary functions of the boundary layer calculation
according to Holstein (cf, table ); A and ¥(«) aprainst «.
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Figure 47(b).- Auxiliary functions for the boundary layer calculation
according to Holstein (cf. table 5); fi(x) and fz(n) against «.
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20 1

Joukowsky profile d/t = 0.15

Figure 49.- Result of the boundary-layer calculation for the example
according to figure 48 (profile ] 015; c, = 0).
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Pohlhausen with the exact solution.
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Comparison of the approximate calculation according to
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Figure 51.- Potential-theoretical velocity distribution on the elliptic
cylinders with axis ratio aj /b1 =1, 2,4, 8 for flow parallel to the

major axis (A = laminar separation point), t' = half the circumference.
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Figure 2.- Result of the boundary-layer calculation for the elliptic
cylinders of axis ratio a1/b1 =1,2,4, 8.
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Suction side
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Figure 54.- Potential-theoretical velocity distribution for the Joukowsky
profile ] 015 for cg = 0; 0.25; 0.50; 1.0.
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Figure 55.-

Result of the boundary-layer calculation for the joukowsky

profile ] 015 (t’ = half the profile perimeter).
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5 Danger of separation

Figure 61.- Pressure distribution and separation on a wing.
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Figure 62.- Boundary layer with laminar separation avoided.
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Figure 63.- Potential flow with separation: U’ < 0; U” < 0;

sometimes without separation: U’ < 0; U” > 0.
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Figure 64.- Divergent channel.

Figure 60.- Prevention of separation on wing by blowing.
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Figure 66.- Prevention of separation by a slotted wing.
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Figure 67.- NACA cowling for prevention of separation.
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Figure 68.- Prevention of separation on wing by suction.
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Figure 69.- Flat plate in longitudinal flow with suction.
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Figure 70.- Asymptotic velocity profile on flat plate in longitudinal

flow with suction (I) 5 = v/-vy (O) 8 *21.73 %}i
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